Sparse Navigable Graphs for
Nearest Neighbor Search

Sanjeev Khanna Ashwin Padaki Erik Waingarten
University of Pennsylvania University of Pennsylvania University of Pennsylvania

(SODA 2026)

Outline of the Talk

1. Background on navigability

Outline of the Talk

1. Background on navigability

2. Set Cover View of navigability

Outline of the Talk

1. Background on navigability
2. Set Cover View of navigability

3. Faster Algorithms for building navigable graphs

Outline of the Talk

1. Background on navigability
2. Set Cover View of navigability
3. Faster Algorithms for building navigable graphs

4. Lower Bound on query complexity

Outline of the Talk

1. Background on navigability
2. Set Cover View of navigability
3. Faster Algorithms for building navigable graphs

4. Lower Bound on query complexity

Concurrent work with overlapping results!

O Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter,
Suel, Wen. Efficiently Constructing Sparse Navigable Graphs. (2025)

Background

(1/4)

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Se o

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

S.\. o
o

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query g, find the point in P closest to q.

Simplest way to solve NNS?

o Brute force: scan through P — O(n) time

© ®©

o More clever: build a graph on P+ greedy search

Why Graphs? It’s a Small World

Real-world networks exhibit small world behavior

Why Graphs? It’s a Small World

Real-world networks exhibit small world behavior

Milgram (1969). Packages from Nebraska — Boston
o “Pass to a friend closer to Boston”

o Median chain length: only six!

I'

';v JARGET

fl

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

o Model: Grid + random long-range edges

o Rule: Move to neighbor closest to the target

™

Y/

N\
|

—
/

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

o Model: Grid + random long-range edges
o Rule: Move to neighbor closest to the target

o

N/
V]

Q. Can we make arbitrary data navigable for NNS?

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

o Model: Grid + random long-range edges
o Rule: Move to neighbor closest to the target

o

N/
V]

Q. Can we make arbitrary data navigable for NNS?

(Motivation behind modern NNS heuristics!)

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, F).

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s # ¢t € P, 3(s,u) € E such that

d(u,t) < d(s, t).

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s # ¢t € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).
Navigability

G is navigable if for all s At € P, 3(s,u) € E such that

d(u,t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z?

Nearest Neighbor Search?

Issue. Navigability =% nearest neighbor search

Nearest Neighbor Search?

Issue. Navigability =% nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query ¢:

d(p,q) < c-d(p*,q).

Nearest Neighbor Search?

Issue. Navigability =% nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query ¢:

d(p,q) < c-d(p*,q).

Nearest Neighbor Search?

Issue. Navigability =% nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query ¢:

d(p,q) < c-d(p*,q).

Nearest Neighbor Search?

Issue. Navigability =% nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query g:

d(p,q) < c-d(p*,q).

GreedySearch(s, g) — (1/¢)-ANN

a-Navigability: a small (world) fix!

Navigability

G is navigable if for all s # t, 3 edge (s,) such that

d(u,t) < d(s,t).

a-Navigability: a small (world) fix!

«-Navigability [Indyk-Xu, 2023]

G is a-navigable if for all s # t € P, 3 edge (s, u) s.t.

d(u,t) < d(s,t)/c.

a-Navigability: a small (world) fix!

«-Navigability [Indyk-Xu, 2023]

G is a-navigable if for all s # t € P, 3 edge (s, u) s.t.

d(u,t) < d(s,t)/c.

Surprising Theorem! [Indyk-Xu, 2023]

Ya > 1, if G is a-navigable, then GreedySearch returns a

(a i 1 +€> -ANN in O(log(A/¢)) hops.

o —

Takeaway: sparse a-navigable graphs — fast ANN!

Building a-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Building a-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
o Slow-DiskANN — a-nav graph with deg,,, < (4a)*") [1X23]

Building a-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
o Slow-DiskANN — a-nav graph with deg,,, < (4a)*") [1X23]
o 3 1-navigable graph of size < O(n'"?) [DGMT24]

Building a-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
o Slow-DiskANN — a-nav graph with deg,,, < (4a)*(*) [1X23]
o 3 1-navigable graph of size < O(n!"%) [DGMT24]
Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P,d) and a > 1,
o What is the sparsest a-navigable graph on P?
o How fast can we compute (or approximate) it?

Building a-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
o Slow-DiskANN — a-nav graph with deg,,, < (4a)*(*) [1X23]
o 3 1-navigable graph of size < O(n!"%) [DGMT24]
Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P,d) and a > 1,
o What is the sparsest a-navigable graph on P?
o How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree

Negative Result for Slow-DiskANN

Slow-DiskANN — a-nav graph with deg,,, < (4a)*(") [1X23]
(A(P) := doubling dimension of P)

Negative Result for Slow-DiskANN

Slow-DiskANN — a-nav graph with deg,,, < (4a)*(") [1X23]
(A(P) := doubling dimension of P)

There is a dataset P where:

o 3 1-navigable graph of max-degree O(logn)
o Slow-DiskANN outputs graph of degree O(n)

= Slow-DiskANN gives Q(n)-approximation (very bad!)

Set Cover View

(2/4)

SNG — Set Cover

«-Navigability from source s

For all ¢ # s, there exists an edge (s, u) with

d(u,t) < d(s,t)/a.

SNG — Set Cover

«-Navigability from source s

For all ¢ # s, there exists an edge (s, u) with

d(u,t) < d(s,t)/a.

Equivalent Set Cover instance.

Elements P\ {s}
Sets Z(s,u) = {t|d(u,t) < d(s,t)/a}

Cover size deg(s)

SNG — Set Cover

«-Navigability from source s

For all ¢ # s, there exists an edge (s, u) with

d(u,t) < d(s,t)/a.

Equivalent Set Cover instance.
Elements P\ {s}
Sets Z(s,u) = {t|d(u,t) < d(s,t)/a}

Cover size deg(s)

Key: a-navigability = n Set Cover instances

SNG — Set Cover

SNG — Set Cover

U9

SNG — Set Cover

Z(s,uy)

Z(s,us)

Z(S, 71,3)

Z(s,uy)

Algorithm via Greedy Set Cover

Key: a-navigability = n Set Cover instances

Algorithm via Greedy Set Cover

Key: a-navigability = n Set Cover instances

Each instance:

o n — 1 elements, n — 1 sets

Algorithm via Greedy Set Cover

Key: a-navigability = n Set Cover instances
Each instance:
o n — 1 elements, n — 1 sets

o Construction: O(n?) time

Algorithm via Greedy Set Cover

Key: a-navigability = n Set Cover instances

Each instance:
o n — 1 elements, n — 1 sets
o Construction: O(n?) time

o Greedy Alg: O(n?) time for (Inn + 1)-approximation

Algorithm via Greedy Set Cover

Key: a-navigability = n Set Cover instances
Each instance:

o n — 1 elements, n — 1 sets

o Construction: O(n?) time

o Greedy Alg: O(n?) time for (Inn + 1)-approximation

O(n?)-time algorithm for (Inn + 1)-approximation to SNG.

Hardness via Set Cover

Result 2B

NP-hard to compute (¢lnn)-approximation to SNG, for some ¢ > 0.

Idea. Encode Set Cover as a navigability condition!

Baseline Results via Set Cover

O(n?)-time algorithm for (Inn + 1)-approximation to SNG.

Result 2B

NP-hard to compute (clnn)-approximation to SNG, for some ¢ > 0.

Baseline Results via Set Cover

O(n?)-time algorithm for (Inn + 1)-approximation to SNG.

Result 2B

NP-hard to compute (clnn)-approximation to SNG, for some ¢ > 0.

Q. Can we compute O(In n)-approximation in time o(n?)?

Faster Algorithms

(3/4)

Membership Set Cover

Recall. Building all sets Z(s,u) — O(n?) time

Membership Set Cover

Recall. Building all sets Z(s,u) — O(n?) time
But, checking t € Z(s,u) = two calls to d(-, ")

d(u,t) < d(s,t)/«

Membership Set Cover

Recall. Building all sets Z(s,u) — O(n?) time
But, checking t € Z(s,u) = two calls to d(-,)

d(u,t) < d(s,t)/a

Set Cover (Membership Model)

Access input only via queries “is element x in set S?”

Algorithm via Membership Set Cover

n elements, m sets, k= min cover size

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

Algorithm via Membership Set Cover

n elements, m sets, k= min cover size

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

O(mk + nk) — O(n - deg(s))

Algorithm via Membership Set Cover

n elements, m sets, k= min cover size

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

O(mk + nk) — O(n - deg(s))

O(n - OPTgiz)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any a-navigable graph)

Consequences of Result 3

O(n - OPTgize)-time algorithm for O(Iln n)-approximation to SNG.

(OPTsize := min size of any a-navigable graph)

Consequences of Result 3

O(n - OPTgize)-time algorithm for O(Iln n)-approximation to SNG.

(OPTsize := min size of any a-navigable graph)

o OPTsze = O(n) = O(n?) runtime

Consequences of Result 3

O(n - OPTgize)-time algorithm for O(Iln n)-approximation to SNG.

(OPTsize := min size of any a-navigable graph)
o OPTsze = O(n) = O(n?) runtime
o a=1 = OPTge = O(n'?) [DGM*24]

— O(n*®) runtime

Fast Algorithm for Membership Set Cover

n elements, m sets, k= min cover size

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

Fast Algorithm for Membership Set Cover

n elements, m sets, k= min cover size

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

Idea. Simulate greedy via random sampling

o Greedy: heaviest set covers > (1/k)-fraction of elements

FindHeavySet: Illustration

S1 HE EEE B [|
S [| | [|
Ss [[N | |
ss: W HE EE BN

Ss [B | HE

L1 L2 X3 T4 L5 e L7 XLg L9 L10 L11 L12

o Sets Sq,...,S5, elements xy,..., x>

FindHeavySet: Illustration

S1
S» [| [| |
S3
. W HE EE B
Ss
L1 L2 X3 T4 L5 e L7 XLg L9 L10 L11 L12
o Sets Sq,...,Ss, elements xq, ...,z

o Set sample: {S5,S4}

FindHeavySet: Illustration

S1 H EENE B~ N
52 B =
S5 o - HE H
s m o [

Ss L]

L1 T2 T3 L4 L5 L6 L7 L8 L9 T10 L1l L12

o Sets Sq,...,Ss, elements xq, ...,z
o Set sample: {S2,S4}

o Element sample: {x¢, z7, xs}

FindHeavySet: Illustration

S1 H EENE B~ N
52 B =
S5 o - HE H
s m o [

Ss L]

L1 *2 L3 L4 L5 Le L7 XL L9 T10 L11 L12

[¢]

Sets S1,...,Ss, elements xq,...,x12

Set sample: {So,S4}

[¢]

[¢]

Element sample: {xg, 7, x5}

[¢]

S4 hits many elements = good set to pick!

FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements

FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements

Imagine: 3k heavy sets, weight Q(1/k)

FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements

Imagine: 3k heavy sets, weight Q(1/k)

o Sample O(m/k) sets — one heavy w.h.p.

FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements

Imagine: 3k heavy sets, weight Q(1/k)

o Sample O(m/k) sets — one heavy w.h.p.

o Sample ©(k1Inn) uncovered elements

FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements

Imagine: 3k heavy sets, weight Q(1/k)

o Sample O(m/k) sets — one heavy w.h.p.
o Sample ©(k1Inn) uncovered elements

o Set hits Q(Inn) elements <= heavy

FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements

Imagine: 3k heavy sets, weight Q(1/k)

o Sample O(m/k) sets — one heavy w.h.p.
o Sample ©(k1Inn) uncovered elements

o Set hits Q(Inn) elements <= heavy

O(m) queries to find heavy set

FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements
Imagine: 3k heavy sets, weight Q(1/k)

o Sample O(m/k) sets — one heavy w.h.p.
o Sample ©(k1Inn) uncovered elements

o Set hits Q(Inn) elements <= heavy

O(m) queries to find heavy set
vs.

Q(mn) to find heaviest

Final Algorithm

Call FindHeavySet until full cover — O(k1nn) rounds

Final Algorithm

Call FindHeavySet until full cover — O(k1nn) rounds
Queries per round:

o O(m) to find heavy set

Final Algorithm

Call FindHeavySet until full cover — O(k1nn) rounds
Queries per round:

o O(m) to find heavy set

o O(n) to update uncovered elements

Final Algorithm

Call FindHeavySet until full cover — O(k1nn) rounds
Queries per round:

o O(m) to find heavy set

o O(n) to update uncovered elements

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

Final Algorithm

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

Final Algorithm

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

O(n - OPTgiz)-time algorithm for O(In n)-approximation to SNG.

Final Algorithm

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

O(n - OPTgiz)-time algorithm for O(In n)-approximation to SNG.

Q. What if OPTgje = Q(n?)?

Bicriteria Approximation to SNG

Bicriteria Approximation to SNG

Given a < 3, build a-navigable graph G.

o Let kg := max-degree of sparsest 5-navigable graph

o Guarantee. deg(G) < (approx factor) x kg

Bicriteria Approximation to SNG

Bicriteria Approximation to SNG

Given a < 3, build a-navigable graph G.
o Let kg := max-degree of sparsest 5-navigable graph

o Guarantee. deg(G) < (approx factor) x kg

Result 4 (informal)

O(n®)-time algorithm for O(In n)-approximation to (, 2a)-SNG.

(w & 2.37 = matrix multiplication exponent)

Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Naive:
o Forall s #t¢t € P and (s,u) € E, check

d(u,t) < d(s,t)/a
o O(n?-deg(G)) — potentially Q(n?) time!

Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Better: batch verification!

Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Better: batch verification!
o Letr =d(s,t) and A, B, € {0,1}"*"

Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Better: batch verification!
o Letr =d(s,t) and A, B, € {0,1}"*"

Als,ul =1 < (s,u) € £
B [u,t] =1 < d(u,t) < r/a.

(adjacency in G)
(small dists in P)

Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Better: batch verification!
o Letr =d(s,t) and A, B, € {0,1}"*"

Als,ul =1 < (s,u) € £ (adjacency in G)
B [u,t] =1 < d(u,t) < r/a. (small dists in P)

o (s,t) constraint satisfied by G <= (A - B,)[s,t] #0

Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Better: batch verification!
o Letr =d(s,t) and A, B, € {0,1}"*"

Als,ul =1 < (s,u) € £ (adjacency in G)
B [u,t] =1 < d(u,t) < r/a. (small dists in P)

o (s,t) constraint satisfied by G <= (A - B,)[s,t] #0

If P has L distances, we can verify a-navigability in time O(L - n®).

Bicriteria Algorithm Sketch

If P has L distances, we can verify a-navigability in time O(L - n®).

Algorithm: Discretize distances in P, then repeat:

Bicriteria Algorithm Sketch

If P has L distances, we can verify a-navigability in time O(L - n®).

Algorithm: Discretize distances in P, then repeat:
1. Sample k5, uncovered constraints — add edges

Bicriteria Algorithm Sketch

If P has L distances, we can verify a-navigability in time O(L - n®).

Algorithm: Discretize distances in P, then repeat:
1. Sample k5, uncovered constraints — add edges
2. Verify — remaining uncovered constraints

Bicriteria Algorithm Sketch

If P has L distances, we can verify a-navigability in time O(L - n®).

Algorithm: Discretize distances in P, then repeat:
1. Sample k5, uncovered constraints — add edges
2. Verify — remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Bicriteria Algorithm Sketch

If P has L distances, we can verify a-navigability in time O(L - n®).

Algorithm: Discretize distances in P, then repeat:
1. Sample k5, uncovered constraints — add edges
2. Verify — remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

O(n*)-time algorithm for O(Inn)-approximation to (c, 2c)-SNG.

Faster Algorithms for SNG

O(n - OPTgz)-time algorithm for O(In n)-approximation to SNG.

Result 4 (informal)

O(n®)-time algorithm for O(In n)-approximation to («, 2a)-SNG.

Faster Algorithms for SNG

O(n - OPTgz)-time algorithm for O(In n)-approximation to SNG.

Result 4 (informal)

O(n®)-time algorithm for O(In n)-approximation to («, 2a)-SNG.

Q. Even faster algorithms for worse approximation?

Lower Bound

(4/4)

Simple 2(n?) Lower Bound

Q(n?) queries to d(-,) needed for any o(n)-approximation to SNG.

Simple 2(n?) Lower Bound

Q(n?) queries to d(-,) needed for any o(n)-approximation to SNG.

Idea. Navigability = graph contains minimum-distance edge

Simple 2(n?) Lower Bound

Q(n?) queries to d(-,-) needed for any o(n)-approximation to SNG.

Idea. Navigability = graph contains minimum-distance edge
o Fix a metric with constant-degree navigable graph

o Shrink a random distance — hidden shortcut

Perturbed Path Metric

Metric on [n]:

. i—7
d(Z’]):lJr%

Perturbation: sample (i*, 7*) at random, then update

d(i*,5%) «— 1

Perturbed Path Metric

i — Jjl
n—1

d(i,j) =1+ €[l,2], d@,5)=1

Perturbed Path Metric

|i — 7
n—

d(i,j) =1+

€ [1,2], d(z*,7") =1

3 1-navigable graph of degree 3:

Perturbed Path Metric

|i — 7
n—

d(i,j) =1+

€ [1,2], d(z*,7") =1

3 1-navigable graph of degree 3:

Any 1-navigable graph must contain edge (¢*,5%)

— Q(n?) queries for degree o(n)

Perturbed Path Metric

|i — 7
n—

d(i,j) =1+

€ [1,2], d(z*,7") =1

3 1-navigable graph of degree 3:

Any 1-navigable graph must contain edge (¢*,5%)

— Q(n?) queries for degree o(n)

[Conway et al. 2025] €(n?) lower bound in Euclidean via Closest Pair

Navigability Landscape

o O(n - OPTgpy)-time for O(Inn)-approximation to SNG

o O(n*)-time for O(Inn)-approximation to (o, 2a)-SNG
o Q)

(n?) queries for any o(n)-approximation to SNG

Navigability Landscape

o O(n - OPTgpy)-time for O(Inn)-approximation to SNG

o O(n*)-time for O(Inn)-approximation to (o, 2a)-SNG
o Q)

(n?) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

o O(n?)-time for O(Inn)-approximation for v = 1
o O

n
(n?:5)-time for O(Inn)-approximation for a > 1

Navigability Landscape

o O(n - OPTgpy)-time for O(Inn)-approximation to SNG

o O(n*)-time for O(Inn)-approximation to (o, 2a)-SNG
o Q)

(n?) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

o O(n?)-time for O(Inn)-approximation for v = 1
o O

n
(n?:5)-time for O(Inn)-approximation for a > 1

Q. Is O(n?) time possible for O(Inn)-approximation when o > 1?

Thanks for Listening!

	Background
	Set Cover View
	Faster Algorithms
	Lower Bound
	Thanks for Listening!

