
Sparse Navigable Graphs for
Nearest Neighbor Search

Sanjeev Khanna
University of Pennsylvania

Ashwin Padaki
University of Pennsylvania

Erik Waingarten
University of Pennsylvania

(SODA 2026)

Outline of the Talk

1. Background on navigability

2. Set Cover View of navigability

3. Faster Algorithms for building navigable graphs

4. Lower Bound on query complexity

Concurrent work with overlapping results!
◦ Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter,

Suel, Wen. Efficiently Constructing Sparse Navigable Graphs. (2025)

Outline of the Talk

1. Background on navigability

2. Set Cover View of navigability

3. Faster Algorithms for building navigable graphs

4. Lower Bound on query complexity

Concurrent work with overlapping results!
◦ Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter,

Suel, Wen. Efficiently Constructing Sparse Navigable Graphs. (2025)

Outline of the Talk

1. Background on navigability

2. Set Cover View of navigability

3. Faster Algorithms for building navigable graphs

4. Lower Bound on query complexity

Concurrent work with overlapping results!
◦ Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter,

Suel, Wen. Efficiently Constructing Sparse Navigable Graphs. (2025)

Outline of the Talk

1. Background on navigability

2. Set Cover View of navigability

3. Faster Algorithms for building navigable graphs

4. Lower Bound on query complexity

Concurrent work with overlapping results!
◦ Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter,

Suel, Wen. Efficiently Constructing Sparse Navigable Graphs. (2025)

Outline of the Talk

1. Background on navigability

2. Set Cover View of navigability

3. Faster Algorithms for building navigable graphs

4. Lower Bound on query complexity

Concurrent work with overlapping results!
◦ Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter,

Suel, Wen. Efficiently Constructing Sparse Navigable Graphs. (2025)

Background

(1/4)

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /

◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p

Why Graphs? It’s a Small World

Real-world networks exhibit small world behavior

Milgram (1969). Packages from Nebraska −→ Boston

◦ “Pass to a friend closer to Boston”
◦ Median chain length: only six!

Why Graphs? It’s a Small World

Real-world networks exhibit small world behavior

Milgram (1969). Packages from Nebraska −→ Boston

◦ “Pass to a friend closer to Boston”
◦ Median chain length: only six!

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

◦ Model: Grid + random long-range edges
◦ Rule: Move to neighbor closest to the target

Q. Can we make arbitrary data navigable for NNS?

(Motivation behind modern NNS heuristics!)

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

◦ Model: Grid + random long-range edges
◦ Rule: Move to neighbor closest to the target

Q. Can we make arbitrary data navigable for NNS?

(Motivation behind modern NNS heuristics!)

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

◦ Model: Grid + random long-range edges
◦ Rule: Move to neighbor closest to the target

Q. Can we make arbitrary data navigable for NNS?

(Motivation behind modern NNS heuristics!)

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2

s

t

Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN

Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN

Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN

Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN

Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN

α-Navigability: a small (world) fix!

Navigability

G is navigable if for all s 6= t, ∃ edge (s, u) such that

d(u, t) < d(s, t).

α-Navigability [Indyk-Xu, 2023]

G is α-navigable if for all s 6= t ∈ P, ∃ edge (s, u) s.t.

d(u, t) < d(s, t)/α.

Surprising Theorem! [Indyk–Xu, 2023]

∀α > 1, if G is α-navigable, then GreedySearch returns a(
α+ 1

α− 1
+ ε

)
–ANN in O(log(∆/ε)) hops.

Takeaway: sparse α-navigable graphs =⇒ fast ANN!

α-Navigability: a small (world) fix!

α-Navigability [Indyk-Xu, 2023]

G is α-navigable if for all s 6= t ∈ P, ∃ edge (s, u) s.t.

d(u, t) < d(s, t)/α.

Surprising Theorem! [Indyk–Xu, 2023]

∀α > 1, if G is α-navigable, then GreedySearch returns a(
α+ 1

α− 1
+ ε

)
–ANN in O(log(∆/ε)) hops.

Takeaway: sparse α-navigable graphs =⇒ fast ANN!

α-Navigability: a small (world) fix!

α-Navigability [Indyk-Xu, 2023]

G is α-navigable if for all s 6= t ∈ P, ∃ edge (s, u) s.t.

d(u, t) < d(s, t)/α.

Surprising Theorem! [Indyk–Xu, 2023]

∀α > 1, if G is α-navigable, then GreedySearch returns a(
α+ 1

α− 1
+ ε

)
–ANN in O(log(∆/ε)) hops.

Takeaway: sparse α-navigable graphs =⇒ fast ANN!

Building α-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
◦ Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P) [IX23]
◦ ∃ 1-navigable graph of size ≤ Õ(n1.5) [DGM+24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and α ≥ 1,
◦ What is the sparsest α-navigable graph on P?
◦ How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree

Building α-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
◦ Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P) [IX23]

◦ ∃ 1-navigable graph of size ≤ Õ(n1.5) [DGM+24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and α ≥ 1,
◦ What is the sparsest α-navigable graph on P?
◦ How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree

Building α-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
◦ Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P) [IX23]
◦ ∃ 1-navigable graph of size ≤ Õ(n1.5) [DGM+24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and α ≥ 1,
◦ What is the sparsest α-navigable graph on P?
◦ How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree

Building α-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
◦ Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P) [IX23]
◦ ∃ 1-navigable graph of size ≤ Õ(n1.5) [DGM+24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and α ≥ 1,
◦ What is the sparsest α-navigable graph on P?
◦ How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree

Building α-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
◦ Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P) [IX23]
◦ ∃ 1-navigable graph of size ≤ Õ(n1.5) [DGM+24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and α ≥ 1,
◦ What is the sparsest α-navigable graph on P?
◦ How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree

Negative Result for Slow-DiskANN

Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P) [IX23]

(λ(P) := doubling dimension of P)

Result 1

There is a dataset P where:
◦ ∃ 1-navigable graph of max-degree O(logn)
◦ Slow-DiskANN outputs graph of degree Θ(n)

=⇒ Slow-DiskANN gives Ω̃(n)-approximation (very bad!)

Negative Result for Slow-DiskANN

Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P) [IX23]

(λ(P) := doubling dimension of P)

Result 1

There is a dataset P where:
◦ ∃ 1-navigable graph of max-degree O(logn)
◦ Slow-DiskANN outputs graph of degree Θ(n)

=⇒ Slow-DiskANN gives Ω̃(n)-approximation (very bad!)

Set Cover View

(2/4)

SNG −→ Set Cover

α-Navigability from source s

For all t 6= s, there exists an edge (s, u) with

d(u, t) < d(s, t)/α.

Equivalent Set Cover instance.

Elements P \ {s}

Sets Z(s, u) := {t | d(u, t) < d(s, t)/α}

Cover size deg(s)

Key: α-navigability ≡ n Set Cover instances

SNG −→ Set Cover

α-Navigability from source s

For all t 6= s, there exists an edge (s, u) with

d(u, t) < d(s, t)/α.

Equivalent Set Cover instance.

Elements P \ {s}

Sets Z(s, u) := {t | d(u, t) < d(s, t)/α}

Cover size deg(s)

Key: α-navigability ≡ n Set Cover instances

SNG −→ Set Cover

α-Navigability from source s

For all t 6= s, there exists an edge (s, u) with

d(u, t) < d(s, t)/α.

Equivalent Set Cover instance.

Elements P \ {s}

Sets Z(s, u) := {t | d(u, t) < d(s, t)/α}

Cover size deg(s)

Key: α-navigability ≡ n Set Cover instances

SNG −→ Set Cover

s

u1

u2

u3

u4

Z(s, u1)

Z(s, u2)

Z(s, u3)

Z(s, u4)

SNG −→ Set Cover

s

u1

u2

u3

u4

Z(s, u1)

Z(s, u2)

Z(s, u3)

Z(s, u4)

SNG −→ Set Cover

s

u1

u2

u3

u4

Z(s, u1)

Z(s, u2)

Z(s, u3)

Z(s, u4)

Algorithm via Greedy Set Cover

Key: α-navigability ≡ n Set Cover instances

Each instance:

◦ n− 1 elements, n− 1 sets

◦ Construction: O(n2) time

◦ Greedy Alg: O(n2) time for (lnn+ 1)-approximation

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.

Algorithm via Greedy Set Cover

Key: α-navigability ≡ n Set Cover instances

Each instance:

◦ n− 1 elements, n− 1 sets

◦ Construction: O(n2) time

◦ Greedy Alg: O(n2) time for (lnn+ 1)-approximation

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.

Algorithm via Greedy Set Cover

Key: α-navigability ≡ n Set Cover instances

Each instance:

◦ n− 1 elements, n− 1 sets

◦ Construction: O(n2) time

◦ Greedy Alg: O(n2) time for (lnn+ 1)-approximation

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.

Algorithm via Greedy Set Cover

Key: α-navigability ≡ n Set Cover instances

Each instance:

◦ n− 1 elements, n− 1 sets

◦ Construction: O(n2) time

◦ Greedy Alg: O(n2) time for (lnn+ 1)-approximation

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.

Algorithm via Greedy Set Cover

Key: α-navigability ≡ n Set Cover instances

Each instance:

◦ n− 1 elements, n− 1 sets

◦ Construction: O(n2) time

◦ Greedy Alg: O(n2) time for (lnn+ 1)-approximation

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.

Hardness via Set Cover

Result 2B

NP-hard to compute (c lnn)-approximation to SNG, for some c > 0.

Idea. Encode Set Cover as a navigability condition!

Baseline Results via Set Cover

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.

Result 2B

NP-hard to compute (c lnn)-approximation to SNG, for some c > 0.

Q. Can we compute O(lnn)-approximation in time o(n3)?

Baseline Results via Set Cover

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.

Result 2B

NP-hard to compute (c lnn)-approximation to SNG, for some c > 0.

Q. Can we compute O(lnn)-approximation in time o(n3)?

Faster Algorithms

(3/4)

Membership Set Cover

Recall. Building all sets Z(s, u)→ O(n3) time

But, checking t ∈ Z(s, u) ≡ two calls to d(·, ·)

d(u, t) < d(s, t)/α

Set Cover (Membership Model)

Access input only via queries “is element x in set S?”

Membership Set Cover

Recall. Building all sets Z(s, u)→ O(n3) time

But, checking t ∈ Z(s, u) ≡ two calls to d(·, ·)

d(u, t) < d(s, t)/α

Set Cover (Membership Model)

Access input only via queries “is element x in set S?”

Membership Set Cover

Recall. Building all sets Z(s, u)→ O(n3) time

But, checking t ∈ Z(s, u) ≡ two calls to d(·, ·)

d(u, t) < d(s, t)/α

Set Cover (Membership Model)

Access input only via queries “is element x in set S?”

Algorithm via Membership Set Cover

n elements, m sets, k = min cover size

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Õ(mk + nk) −→ Õ(n · deg(s))

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any α-navigable graph)

Algorithm via Membership Set Cover

n elements, m sets, k = min cover size

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Õ(mk + nk) −→ Õ(n · deg(s))

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any α-navigable graph)

Algorithm via Membership Set Cover

n elements, m sets, k = min cover size

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Õ(mk + nk) −→ Õ(n · deg(s))

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any α-navigable graph)

Consequences of Result 3

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any α-navigable graph)

◦ OPTsize = Õ(n) =⇒ Õ(n2) runtime

◦ α = 1 =⇒ OPTsize = Õ(n1.5) [DGM+24]

=⇒ Õ(n2.5) runtime

Consequences of Result 3

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any α-navigable graph)

◦ OPTsize = Õ(n) =⇒ Õ(n2) runtime

◦ α = 1 =⇒ OPTsize = Õ(n1.5) [DGM+24]

=⇒ Õ(n2.5) runtime

Consequences of Result 3

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any α-navigable graph)

◦ OPTsize = Õ(n) =⇒ Õ(n2) runtime

◦ α = 1 =⇒ OPTsize = Õ(n1.5) [DGM+24]

=⇒ Õ(n2.5) runtime

Fast Algorithm for Membership Set Cover

n elements, m sets, k = min cover size

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Idea. Simulate greedy via random sampling

◦ Greedy: heaviest set covers ≥ (1/k)-fraction of elements

Fast Algorithm for Membership Set Cover

n elements, m sets, k = min cover size

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Idea. Simulate greedy via random sampling

◦ Greedy: heaviest set covers ≥ (1/k)-fraction of elements

FindHeavySet: Illustration

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

◦ Sets S1, . . . , S5, elements x1, . . . ,x12

◦ Set sample: {S2,S4}

◦ Element sample: {x6,x7,x8}

◦ S4 hits many elements =⇒ good set to pick!

FindHeavySet: Illustration

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

◦ Sets S1, . . . , S5, elements x1, . . . ,x12

◦ Set sample: {S2,S4}

◦ Element sample: {x6,x7,x8}

◦ S4 hits many elements =⇒ good set to pick!

FindHeavySet: Illustration

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

◦ Sets S1, . . . , S5, elements x1, . . . ,x12

◦ Set sample: {S2,S4}

◦ Element sample: {x6,x7,x8}

◦ S4 hits many elements =⇒ good set to pick!

FindHeavySet: Illustration

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S1

S2

S3

S4

S5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

◦ Sets S1, . . . , S5, elements x1, . . . ,x12

◦ Set sample: {S2,S4}

◦ Element sample: {x6,x7,x8}

◦ S4 hits many elements =⇒ good set to pick!

FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)

◦ Sample Õ(m/k) sets −→ one heavy w.h.p.

◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest

FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)

◦ Sample Õ(m/k) sets −→ one heavy w.h.p.

◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest

FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)

◦ Sample Õ(m/k) sets −→ one heavy w.h.p.

◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest

FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)

◦ Sample Õ(m/k) sets −→ one heavy w.h.p.

◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest

FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)

◦ Sample Õ(m/k) sets −→ one heavy w.h.p.

◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest

FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)

◦ Sample Õ(m/k) sets −→ one heavy w.h.p.

◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest

FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)

◦ Sample Õ(m/k) sets −→ one heavy w.h.p.

◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest

Final Algorithm

Call FindHeavySet until full cover −→ O(k lnn) rounds

Queries per round:

◦ Õ(m) to find heavy set

◦ O(n) to update uncovered elements

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Final Algorithm

Call FindHeavySet until full cover −→ O(k lnn) rounds

Queries per round:

◦ Õ(m) to find heavy set

◦ O(n) to update uncovered elements

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Final Algorithm

Call FindHeavySet until full cover −→ O(k lnn) rounds

Queries per round:

◦ Õ(m) to find heavy set

◦ O(n) to update uncovered elements

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Final Algorithm

Call FindHeavySet until full cover −→ O(k lnn) rounds

Queries per round:

◦ Õ(m) to find heavy set

◦ O(n) to update uncovered elements

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Final Algorithm

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

Q. What if OPTsize = Ω̃(n2)?

Final Algorithm

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

Q. What if OPTsize = Ω̃(n2)?

Final Algorithm

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

Q. What if OPTsize = Ω̃(n2)?

Bicriteria Approximation to SNG

Bicriteria Approximation to SNG

Given α ≤ β, build α-navigable graph G.

◦ Let kβ := max-degree of sparsest β-navigable graph

◦ Guarantee. deg(G) ≤ (approx factor)× kβ

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

(ω ≈ 2.37 = matrix multiplication exponent)

Bicriteria Approximation to SNG

Bicriteria Approximation to SNG

Given α ≤ β, build α-navigable graph G.

◦ Let kβ := max-degree of sparsest β-navigable graph

◦ Guarantee. deg(G) ≤ (approx factor)× kβ

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

(ω ≈ 2.37 = matrix multiplication exponent)

Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Better: batch verification!
◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Naive:
◦ For all s 6= t ∈ P and (s, u) ∈ E, check

d(u, t) < d(s, t)/α

◦ Θ(n2 · deg(G)) −→ potentially Ω(n3) time!

Better: batch verification!
◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Better: batch verification!

◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Better: batch verification!
◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Better: batch verification!
◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Better: batch verification!
◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Better: batch verification!
◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Bicriteria Algorithm Sketch

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Algorithm: Discretize distances in P, then repeat:

1. Sample k2α uncovered constraints −→ add edges
2. Verify −→ remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

Bicriteria Algorithm Sketch

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Algorithm: Discretize distances in P, then repeat:
1. Sample k2α uncovered constraints −→ add edges

2. Verify −→ remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

Bicriteria Algorithm Sketch

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Algorithm: Discretize distances in P, then repeat:
1. Sample k2α uncovered constraints −→ add edges
2. Verify −→ remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

Bicriteria Algorithm Sketch

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Algorithm: Discretize distances in P, then repeat:
1. Sample k2α uncovered constraints −→ add edges
2. Verify −→ remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

Bicriteria Algorithm Sketch

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).

Algorithm: Discretize distances in P, then repeat:
1. Sample k2α uncovered constraints −→ add edges
2. Verify −→ remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

Faster Algorithms for SNG

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

Q. Even faster algorithms for worse approximation?

Faster Algorithms for SNG

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

Q. Even faster algorithms for worse approximation?

Lower Bound

(4/4)

SimpleΩ(n2) Lower Bound

Result 5

Ω(n2) queries to d(·, ·) needed for any o(n)-approximation to SNG.

Idea. Navigability =⇒ graph contains minimum-distance edge

◦ Fix a metric with constant-degree navigable graph

◦ Shrink a random distance −→ hidden shortcut

SimpleΩ(n2) Lower Bound

Result 5

Ω(n2) queries to d(·, ·) needed for any o(n)-approximation to SNG.

Idea. Navigability =⇒ graph contains minimum-distance edge

◦ Fix a metric with constant-degree navigable graph

◦ Shrink a random distance −→ hidden shortcut

SimpleΩ(n2) Lower Bound

Result 5

Ω(n2) queries to d(·, ·) needed for any o(n)-approximation to SNG.

Idea. Navigability =⇒ graph contains minimum-distance edge

◦ Fix a metric with constant-degree navigable graph

◦ Shrink a random distance −→ hidden shortcut

Perturbed Path Metric

Metric on [n]:

d(i, j) = 1 +
|i− j|
n− 1

Perturbation: sample (i∗, j∗) at random, then update

d(i∗, j∗)←− 1

Perturbed Path Metric

d(i, j) = 1 +
|i− j|
n− 1

∈ [1, 2], d(i∗, j∗) = 1

∃ 1-navigable graph of degree 3:

1 ni∗ j∗

Any 1-navigable graph must contain edge (i∗, j∗)

=⇒ Ω(n2) queries for degree o(n)

[Conway et al. 2025] Ω̃(n2) lower bound in Euclidean via Closest Pair

Perturbed Path Metric

d(i, j) = 1 +
|i− j|
n− 1

∈ [1, 2], d(i∗, j∗) = 1

∃ 1-navigable graph of degree 3:

1 ni∗ j∗

Any 1-navigable graph must contain edge (i∗, j∗)

=⇒ Ω(n2) queries for degree o(n)

[Conway et al. 2025] Ω̃(n2) lower bound in Euclidean via Closest Pair

Perturbed Path Metric

d(i, j) = 1 +
|i− j|
n− 1

∈ [1, 2], d(i∗, j∗) = 1

∃ 1-navigable graph of degree 3:

1 ni∗ j∗

Any 1-navigable graph must contain edge (i∗, j∗)

=⇒ Ω(n2) queries for degree o(n)

[Conway et al. 2025] Ω̃(n2) lower bound in Euclidean via Closest Pair

Perturbed Path Metric

d(i, j) = 1 +
|i− j|
n− 1

∈ [1, 2], d(i∗, j∗) = 1

∃ 1-navigable graph of degree 3:

1 ni∗ j∗

Any 1-navigable graph must contain edge (i∗, j∗)

=⇒ Ω(n2) queries for degree o(n)

[Conway et al. 2025] Ω̃(n2) lower bound in Euclidean via Closest Pair

Navigability Landscape

Results 3, 4, 5

◦ Õ(n ·OPTsize)-time for O(lnn)-approximation to SNG

◦ Õ(nω)-time for O(lnn)-approximation to (α, 2α)-SNG

◦ Ω(n2) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

◦ Õ(n2)-time for O(lnn)-approximation for α = 1

◦ Õ(n2.5)-time for O(lnn)-approximation for α > 1

Q. Is Õ(n2) time possible for O(lnn)-approximation when α > 1?

Navigability Landscape

Results 3, 4, 5

◦ Õ(n ·OPTsize)-time for O(lnn)-approximation to SNG

◦ Õ(nω)-time for O(lnn)-approximation to (α, 2α)-SNG

◦ Ω(n2) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

◦ Õ(n2)-time for O(lnn)-approximation for α = 1

◦ Õ(n2.5)-time for O(lnn)-approximation for α > 1

Q. Is Õ(n2) time possible for O(lnn)-approximation when α > 1?

Navigability Landscape

Results 3, 4, 5

◦ Õ(n ·OPTsize)-time for O(lnn)-approximation to SNG

◦ Õ(nω)-time for O(lnn)-approximation to (α, 2α)-SNG

◦ Ω(n2) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

◦ Õ(n2)-time for O(lnn)-approximation for α = 1

◦ Õ(n2.5)-time for O(lnn)-approximation for α > 1

Q. Is Õ(n2) time possible for O(lnn)-approximation when α > 1?

Thanks for Listening!

	Background
	Set Cover View
	Faster Algorithms
	Lower Bound
	Thanks for Listening!

