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Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /

◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q, find the point in P closest to q.

Simplest way to solve NNS?

◦ Brute force: scan through P −→ O(n) time /
◦ More clever: build a graph on P + greedy search ,

q

s

p



Why Graphs? It’s a Small World

Real-world networks exhibit small world behavior

Milgram (1969). Packages from Nebraska −→ Boston

◦ “Pass to a friend closer to Boston”
◦ Median chain length: only six!
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Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

◦ Model: Grid + random long-range edges
◦ Rule: Move to neighbor closest to the target

Q. Can we make arbitrary data navigable for NNS?

(Motivation behind modern NNS heuristics!)
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Navigability in General Metrics

Dataset P with metric d; directed graph G = (P, E).

Navigability

G is navigable if for all s 6= t ∈ P, ∃(s, u) ∈ E such that

d(u, t) < d(s, t).

“Greedy search eventually reaches target”

Example: Grid graph in Z2
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Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN



Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN



Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN



Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN



Nearest Neighbor Search?

Issue. Navigability 6=⇒ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query q:

d(p, q) ≤ c · d(p∗, q).

1 1

1 + ε
s t

t′

q1 ε

GreedySearch(s, q)→ (1/ε)-ANN



α-Navigability: a small (world) fix!

Navigability

G is navigable if for all s 6= t, ∃ edge (s, u) such that

d(u, t) < d(s, t).

α-Navigability [Indyk-Xu, 2023]

G is α-navigable if for all s 6= t ∈ P, ∃ edge (s, u) s.t.

d(u, t) < d(s, t)/α.

Surprising Theorem! [Indyk–Xu, 2023]

∀α > 1, if G is α-navigable, then GreedySearch returns a(
α+ 1

α− 1
+ ε

)
–ANN in O(log(∆/ε)) hops.

Takeaway: sparse α-navigable graphs =⇒ fast ANN!
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Building α-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
◦ Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P ) [IX23]
◦ ∃ 1-navigable graph of size ≤ Õ(n1.5) [DGM+24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and α ≥ 1,
◦ What is the sparsest α-navigable graph on P?
◦ How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree
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Negative Result for Slow-DiskANN

Slow-DiskANN → α-nav graph with degmax ≤ (4α)λ(P ) [IX23]

(λ(P ) := doubling dimension of P )

Result 1

There is a dataset P where:
◦ ∃ 1-navigable graph of max-degree O(logn)
◦ Slow-DiskANN outputs graph of degree Θ(n)

=⇒ Slow-DiskANN gives Ω̃(n)-approximation (very bad!)
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SNG −→ Set Cover

α-Navigability from source s

For all t 6= s, there exists an edge (s, u) with

d(u, t) < d(s, t)/α.

Equivalent Set Cover instance.

Elements P \ {s}

Sets Z(s, u) := {t | d(u, t) < d(s, t)/α}

Cover size deg(s)

Key: α-navigability ≡ n Set Cover instances
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Algorithm via Greedy Set Cover

Key: α-navigability ≡ n Set Cover instances

Each instance:

◦ n− 1 elements, n− 1 sets

◦ Construction: O(n2) time

◦ Greedy Alg: O(n2) time for (lnn+ 1)-approximation

Result 2A

O(n3)-time algorithm for (lnn+ 1)-approximation to SNG.
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Hardness via Set Cover

Result 2B

NP-hard to compute (c lnn)-approximation to SNG, for some c > 0.

Idea. Encode Set Cover as a navigability condition!
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Membership Set Cover

Recall. Building all sets Z(s, u)→ O(n3) time

But, checking t ∈ Z(s, u) ≡ two calls to d(·, ·)

d(u, t) < d(s, t)/α

Set Cover (Membership Model)

Access input only via queries “is element x in set S?”
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Algorithm via Membership Set Cover

n elements, m sets, k = min cover size

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Õ(mk + nk) −→ Õ(n · deg(s))

Result 3

Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.

(OPTsize := min size of any α-navigable graph)
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n elements, m sets, k = min cover size

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.

Idea. Simulate greedy via random sampling

◦ Greedy: heaviest set covers ≥ (1/k)-fraction of elements
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FindHeavySet: Illustration
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◦ Sets S1, . . . , S5, elements x1, . . . ,x12

◦ Set sample: {S2,S4}
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◦ Sample Θ(k lnn) uncovered elements

◦ Set hits Ω(lnn) elements ⇐⇒ heavy

Õ(m) queries to find heavy set
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Ω(mn) to find heaviest
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Õ(m) queries to find heavy set

vs.

Ω(mn) to find heaviest



FindHeavySet: Procedure

Goal. Find a set covering Ω(1/k)-fraction of uncovered elements

Imagine: ∃ k heavy sets, weight Ω(1/k)
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Final Algorithm

Call FindHeavySet until full cover −→ O(k lnn) rounds

Queries per round:

◦ Õ(m) to find heavy set

◦ O(n) to update uncovered elements

Lemma

O(lnn)-approx Set Cover (membership) in Õ(mk + nk) time.
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Õ(n ·OPTsize)-time algorithm for O(lnn)-approximation to SNG.
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Bicriteria Approximation to SNG

Given α ≤ β, build α-navigable graph G.

◦ Let kβ := max-degree of sparsest β-navigable graph

◦ Guarantee. deg(G) ≤ (approx factor)× kβ

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.

(ω ≈ 2.37 = matrix multiplication exponent)
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Verification via Matrix Multiplication

How to even verify that G is α-navigable?

Better: batch verification!
◦ Let r = d(s, t) and A,Br ∈ {0, 1}n×n

A[s, u] = 1 ⇐⇒ (s, u) ∈ E (adjacency in G)

Br[u, t] = 1 ⇐⇒ d(u, t) < r/α. (small dists in P)

◦ (s, t) constraint satisfied by G ⇐⇒ (A ·Br)[s, t] 6= 0

Lemma

If P has L distances, we can verify α-navigability in time O(L · nω).
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If P has L distances, we can verify α-navigability in time O(L · nω).

Algorithm: Discretize distances in P, then repeat:

1. Sample k2α uncovered constraints −→ add edges
2. Verify −→ remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

Õ(nω)-time algorithm for O(lnn)-approximation to (α, 2α)-SNG.
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SimpleΩ(n2) Lower Bound

Result 5

Ω(n2) queries to d(·, ·) needed for any o(n)-approximation to SNG.

Idea. Navigability =⇒ graph contains minimum-distance edge

◦ Fix a metric with constant-degree navigable graph

◦ Shrink a random distance −→ hidden shortcut
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Perturbed Path Metric

Metric on [n]:

d(i, j) = 1 +
|i− j|
n− 1

Perturbation: sample (i∗, j∗) at random, then update

d(i∗, j∗)←− 1
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Any 1-navigable graph must contain edge (i∗, j∗)

=⇒ Ω(n2) queries for degree o(n)

[Conway et al. 2025] Ω̃(n2) lower bound in Euclidean via Closest Pair
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Results 3, 4, 5

◦ Õ(n ·OPTsize)-time for O(lnn)-approximation to SNG

◦ Õ(nω)-time for O(lnn)-approximation to (α, 2α)-SNG

◦ Ω(n2) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

◦ Õ(n2)-time for O(lnn)-approximation for α = 1

◦ Õ(n2.5)-time for O(lnn)-approximation for α > 1

Q. Is Õ(n2) time possible for O(lnn)-approximation when α > 1?
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