

Sparse Navigable Graphs for Nearest Neighbor Search

Sanjeev Khanna

University of Pennsylvania

Ashwin Padaki

University of Pennsylvania

Erik Waingarten

University of Pennsylvania

(SODA 2026)

Outline of the Talk

1. **Background on navigability**

Outline of the Talk

1. **Background** on navigability
2. **Set Cover View** of navigability

Outline of the Talk

1. **Background** on navigability
2. **Set Cover View** of navigability
3. **Faster Algorithms** for building navigable graphs

Outline of the Talk

1. **Background** on navigability
2. **Set Cover View** of navigability
3. **Faster Algorithms** for building navigable graphs
4. **Lower Bound** on query complexity

Outline of the Talk

1. **Background** on navigability
2. **Set Cover View** of navigability
3. **Faster Algorithms** for building navigable graphs
4. **Lower Bound** on query complexity

Concurrent work with overlapping results!

- Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter, Suel, Wen. *Efficiently Constructing Sparse Navigable Graphs.* (2025)

Background

(1/4)

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time

Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time
- **More clever:** build a graph on P + *greedy search*

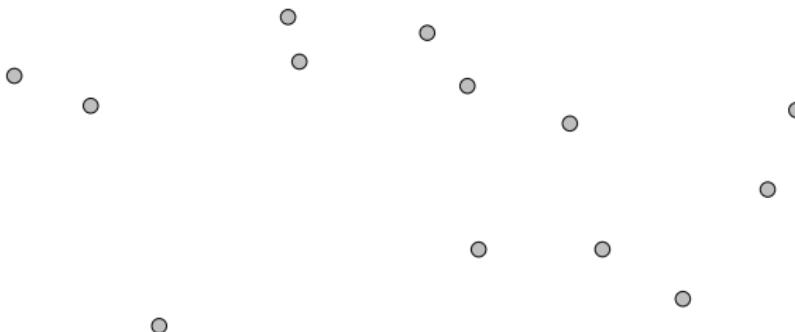
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



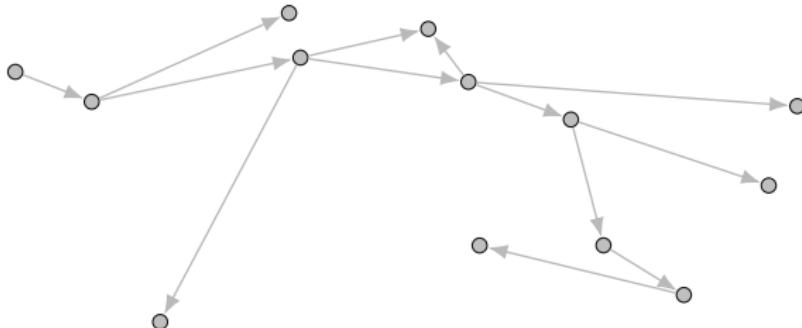
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



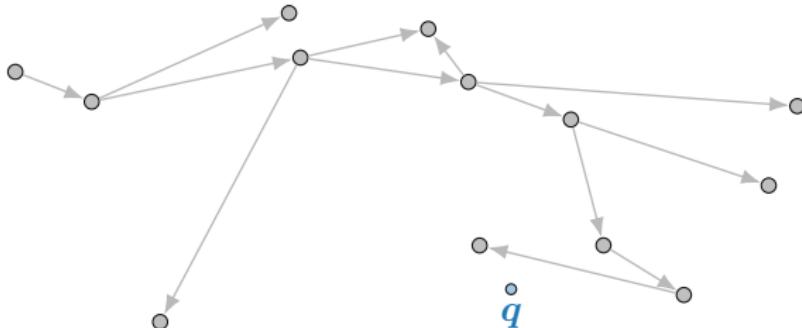
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



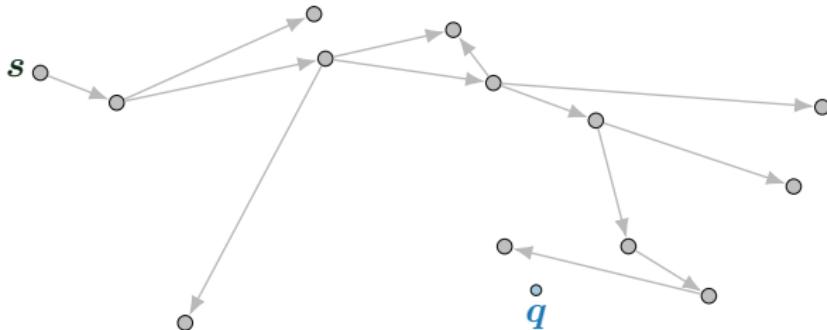
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



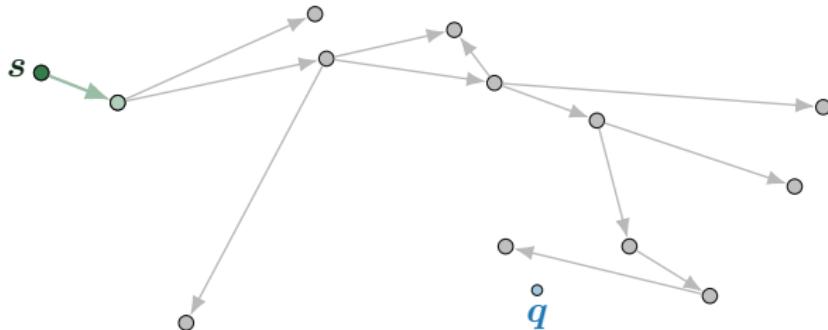
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



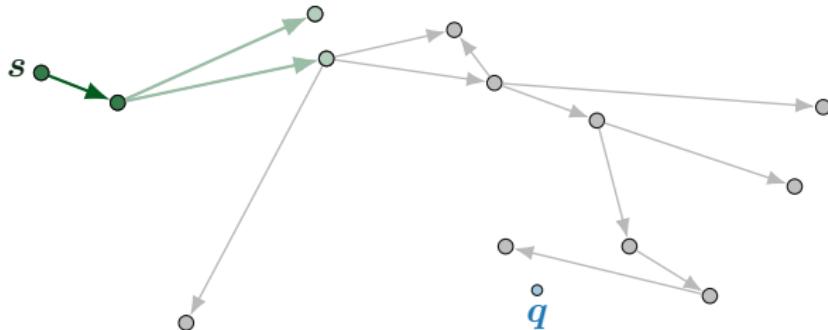
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



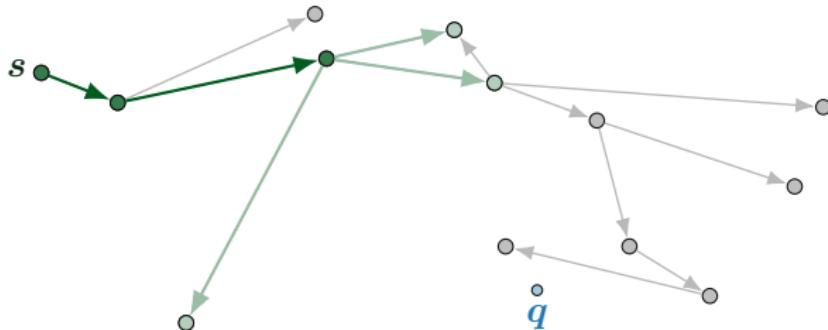
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



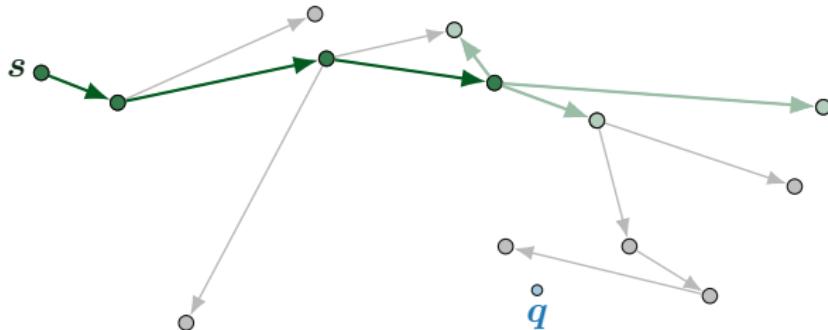
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



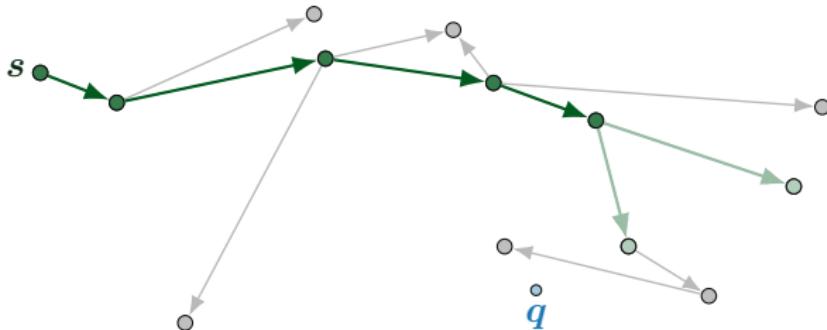
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



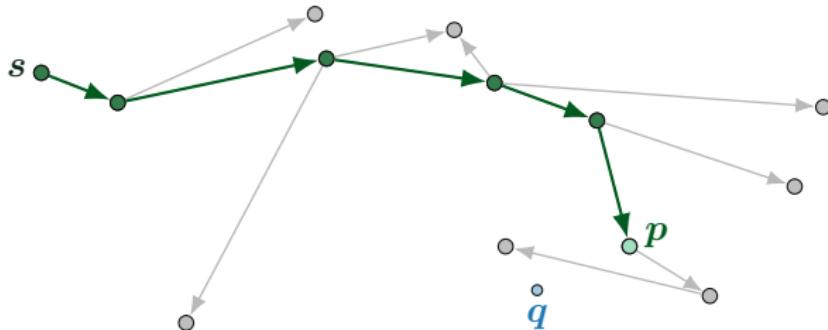
Nearest Neighbor Search

Nearest Neighbor Search (NNS)

Given dataset P and query q , find the point in P closest to q .

Simplest way to solve NNS?

- **Brute force:** scan through P $\longrightarrow O(n)$ time :(
- **More clever:** build a graph on P + *greedy search* :)



Why Graphs? It's a Small World

Real-world networks exhibit *small world* behavior

Why Graphs? It's a Small World

Real-world networks exhibit *small world* behavior

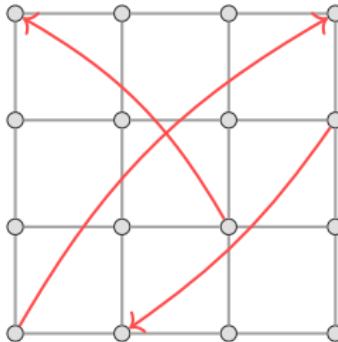
Milgram (1969). Packages from Nebraska → Boston

- “Pass to a friend closer to Boston”
- Median chain length: only six!

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram's experiment

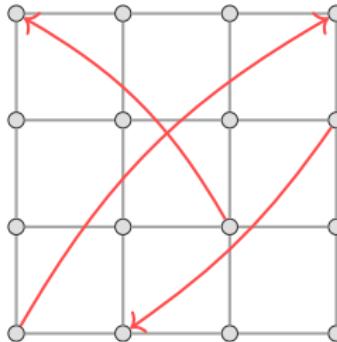
- **Model:** Grid + random long-range edges
- **Rule:** Move to neighbor closest to the target



Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram's experiment

- **Model:** Grid + random long-range edges
- **Rule:** Move to neighbor closest to the target

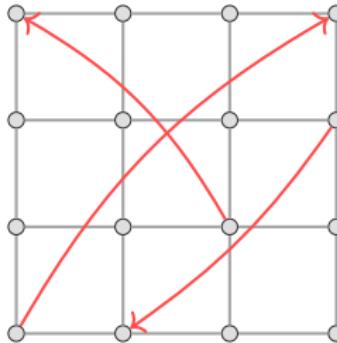


Q. Can we make *arbitrary data* navigable for NNS?

Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram's experiment

- **Model:** Grid + random long-range edges
- **Rule:** Move to neighbor closest to the target



Q. Can we make *arbitrary data* navigable for NNS?

(Motivation behind modern NNS heuristics!)

Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists(s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists(s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

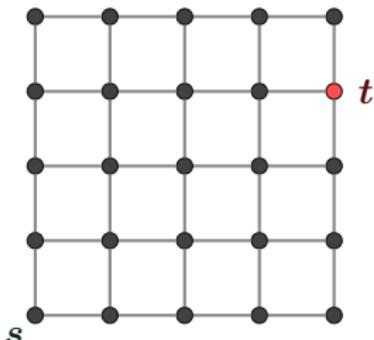
Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists (s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

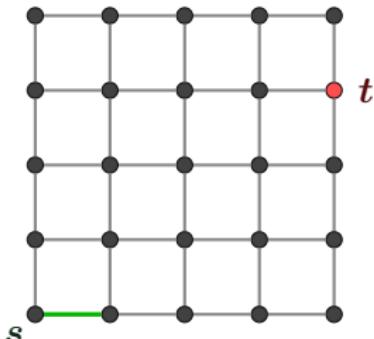
Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists (s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

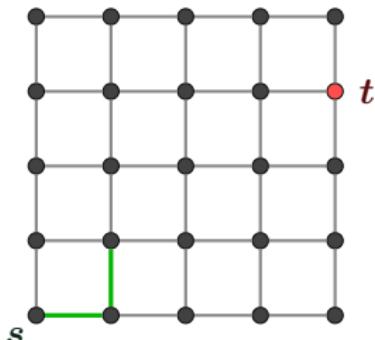
Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists (s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

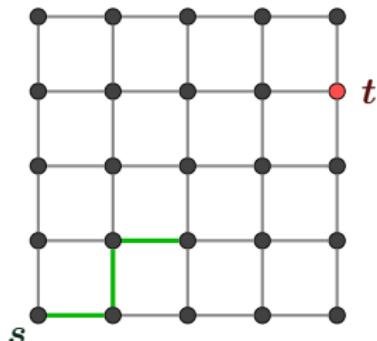
Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists (s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

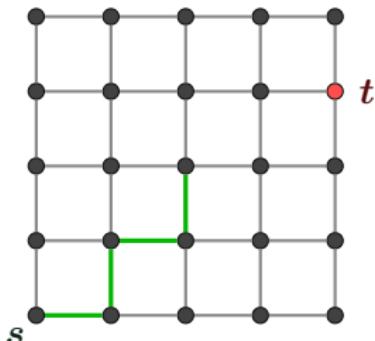
Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists (s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Navigability in General Metrics

Dataset P with metric d ; directed graph $G = (P, E)$.

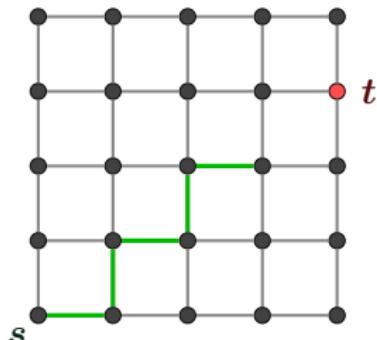
Navigability

G is *navigable* if for all $s \neq t \in P$, $\exists (s, u) \in E$ such that

$$d(u, \textcolor{red}{t}) < d(s, \textcolor{red}{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

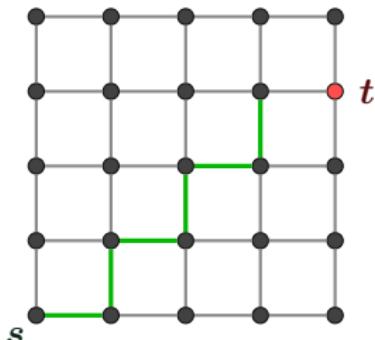
Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists (s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Navigability in General Metrics

Dataset \mathbf{P} with metric d ; directed graph $\mathbf{G} = (\mathbf{P}, E)$.

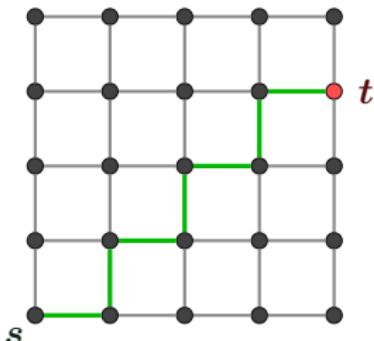
Navigability

\mathbf{G} is *navigable* if for all $s \neq \mathbf{t} \in \mathbf{P}$, $\exists (s, u) \in E$ such that

$$d(u, \mathbf{t}) < d(s, \mathbf{t}).$$

“Greedy search eventually reaches target”

Example: Grid graph in \mathbb{Z}^2



Nearest Neighbor Search?

Issue. Navigability $\not\Rightarrow$ nearest neighbor search

Nearest Neighbor Search?

Issue. Navigability $\not\Rightarrow$ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return *any* c -approximate nearest neighbor \mathbf{p} of query \mathbf{q} :

$$d(\mathbf{p}, \mathbf{q}) \leq c \cdot d(\mathbf{p}^*, \mathbf{q}).$$

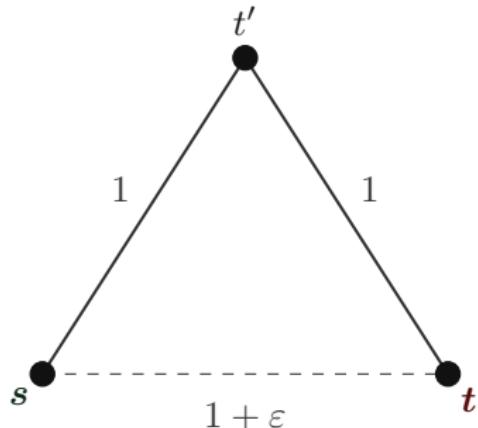
Nearest Neighbor Search?

Issue. Navigability $\not\Rightarrow$ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return *any* c -approximate nearest neighbor \mathbf{p} of query \mathbf{q} :

$$d(\mathbf{p}, \mathbf{q}) \leq c \cdot d(\mathbf{p}^*, \mathbf{q}).$$



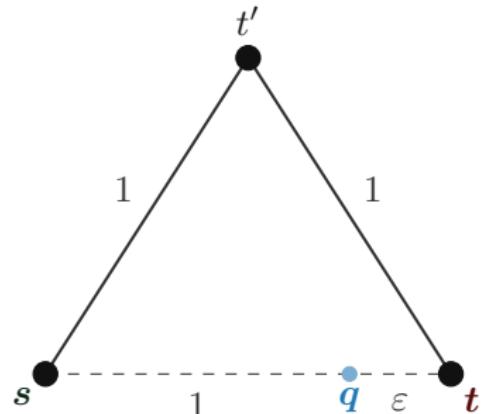
Nearest Neighbor Search?

Issue. Navigability $\not\Rightarrow$ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return *any* c -approximate nearest neighbor \mathbf{p} of query \mathbf{q} :

$$d(\mathbf{p}, \mathbf{q}) \leq c \cdot d(\mathbf{p}^*, \mathbf{q}).$$



Nearest Neighbor Search?

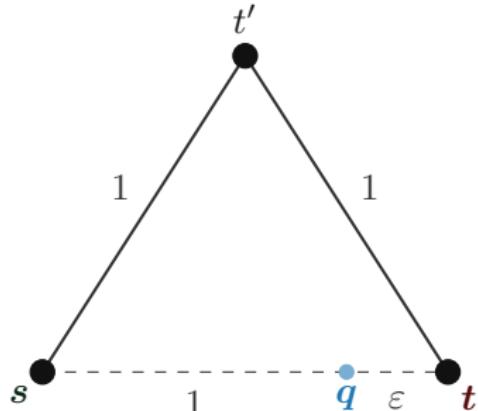
Issue. Navigability $\not\Rightarrow$ nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return *any* c -approximate nearest neighbor \mathbf{p} of query \mathbf{q} :

$$d(\mathbf{p}, \mathbf{q}) \leq c \cdot d(\mathbf{p}^*, \mathbf{q}).$$

GreedySearch(s, \mathbf{q}) \rightarrow $(1/\varepsilon)$ -ANN



α -Navigability: a small (world) fix!

Navigability

G is *navigable* if for all $s \neq \textcolor{red}{t}$, \exists edge (s, u) such that

$$d(u, \textcolor{red}{t}) < d(s, \textcolor{red}{t}).$$

α -Navigability: a small (world) fix!

α -Navigability [Indyk-Xu, 2023]

G is *α -navigable* if for all $s \neq t \in P$, \exists edge (s, u) s.t.

$$d(u, t) < d(s, t)/\alpha.$$

α -Navigability: a small (world) fix!

α -Navigability [Indyk-Xu, 2023]

G is *α -navigable* if for all $s \neq t \in P$, \exists edge (s, u) s.t.

$$d(u, t) < d(s, t)/\alpha.$$

Surprising Theorem! [Indyk-Xu, 2023]

$\forall \alpha > 1$, if G is α -navigable, then GreedySearch returns a

$$\left(\frac{\alpha + 1}{\alpha - 1} + \varepsilon \right) \text{-ANN in } O(\log(\Delta/\varepsilon)) \text{ hops.}$$

Takeaway: sparse α -navigable graphs \implies fast ANN!

Building α -Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Building α -Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:

- Slow-DiskANN \rightarrow α -nav graph with $\deg_{\max} \leq (4\alpha)^{\lambda(P)}$ [IX23]

Building α -Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:

- Slow-DiskANN \rightarrow α -nav graph with $\deg_{\max} \leq (4\alpha)^{\lambda(P)}$ [IX23]
- \exists 1-navigable graph of size $\leq \tilde{O}(n^{1.5})$ [DGM⁺24]

Building α -Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:

- Slow-DiskANN $\rightarrow \alpha$ -nav graph with $\deg_{\max} \leq (4\alpha)^{\lambda(P)}$ [IX23]
- \exists 1-navigable graph of size $\leq \tilde{O}(n^{1.5})$ [DGM⁺24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and $\alpha \geq 1$,

- What is the sparsest α -navigable graph on P ?
- How fast can we compute (or approximate) it?

Building α -Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:

- Slow-DiskANN $\rightarrow \alpha$ -nav graph with $\deg_{\max} \leq (4\alpha)^{\lambda(P)}$ [IX23]
- \exists 1-navigable graph of size $\leq \tilde{O}(n^{1.5})$ [DGM⁺24]

Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P, d) and $\alpha \geq 1$,

- What is the sparsest α -navigable graph on P ?
- How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree

Negative Result for Slow-DiskANN

Slow-DiskANN \rightarrow α -nav graph with $\deg_{\max} \leq (4\alpha)^{\lambda(P)}$ [IX23]

$(\lambda(P) := \text{doubling dimension of } P)$

Negative Result for Slow-DiskANN

Slow-DiskANN \rightarrow α -nav graph with $\deg_{\max} \leq (4\alpha)^{\lambda(P)}$ [IX23]
 $(\lambda(P) := \text{doubling dimension of } P)$

Result 1

There is a dataset \mathbf{P} where:

- \exists 1-navigable graph of max-degree $O(\log n)$
- Slow-DiskANN outputs graph of degree $\Theta(n)$

\implies Slow-DiskANN gives $\tilde{\Omega}(n)$ -approximation (very bad!)

Set Cover View

(2/4)

SNG \longrightarrow Set Cover

α -Navigability from source s

For all $t \neq s$, there exists an edge (s, u) with

$$d(u, t) < d(s, t)/\alpha.$$

SNG \longrightarrow Set Cover

α -Navigability from source s

For all $t \neq s$, there exists an edge (s, u) with

$$d(u, t) < d(s, t)/\alpha.$$

Equivalent Set Cover instance.

Elements $\mathbf{P} \setminus \{s\}$

Sets $Z(s, u) := \{t \mid d(u, t) < d(s, t)/\alpha\}$

Cover size $\deg(s)$

SNG \longrightarrow Set Cover

α -Navigability from source s

For all $t \neq s$, there exists an edge (s, u) with

$$d(u, t) < d(s, t)/\alpha.$$

Equivalent Set Cover instance.

Elements $\mathbf{P} \setminus \{s\}$

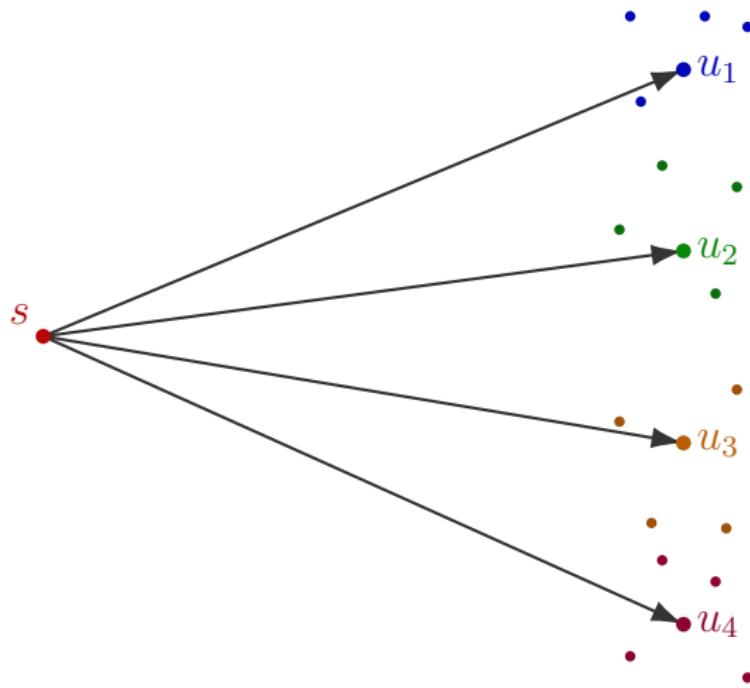
Sets $Z(s, u) := \{t \mid d(u, t) < d(s, t)/\alpha\}$

Cover size $\deg(s)$

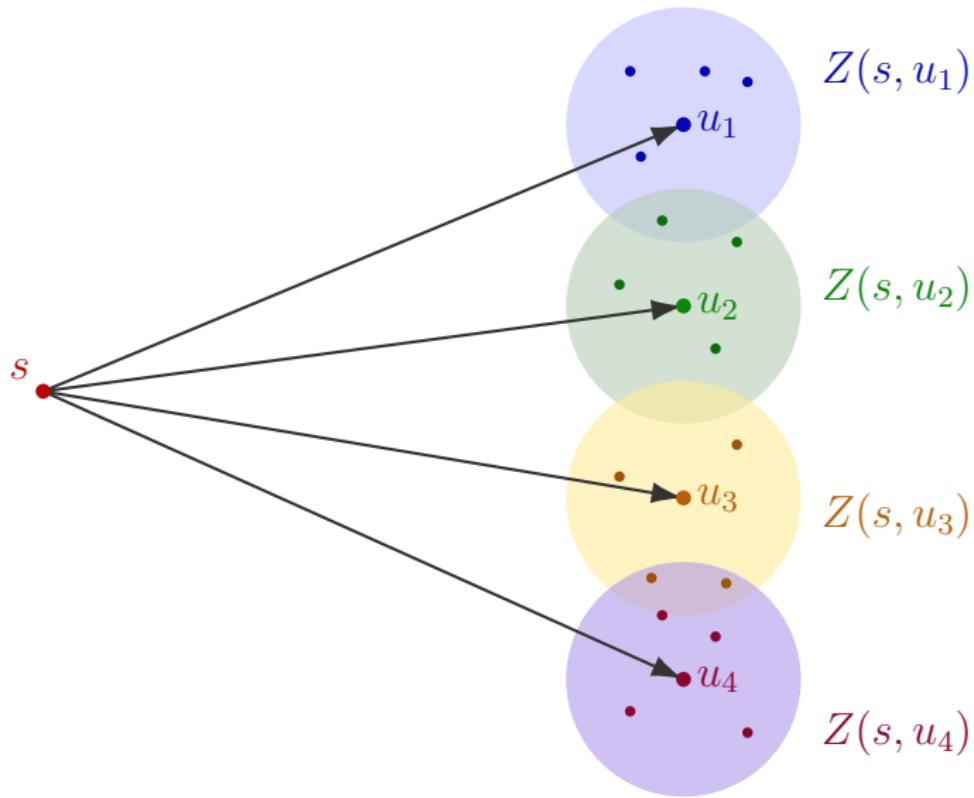
Key: α -navigability $\equiv n$ Set Cover instances

SNG \longrightarrow Set Cover

SNG \longrightarrow Set Cover



SNG \longrightarrow Set Cover



Algorithm via Greedy Set Cover

Key: α -navigability \equiv n Set Cover instances

Algorithm via Greedy Set Cover

Key: α -navigability \equiv n Set Cover instances

Each instance:

- $n - 1$ elements, $n - 1$ sets

Algorithm via Greedy Set Cover

Key: α -navigability \equiv n Set Cover instances

Each instance:

- $n - 1$ elements, $n - 1$ sets
- Construction: $O(n^2)$ time

Algorithm via Greedy Set Cover

Key: α -navigability \equiv n Set Cover instances

Each instance:

- $n - 1$ elements, $n - 1$ sets
- Construction: $O(n^2)$ time
- Greedy Alg: $O(n^2)$ time for $(\ln n + 1)$ -approximation

Algorithm via Greedy Set Cover

Key: α -navigability \equiv n Set Cover instances

Each instance:

- $n - 1$ elements, $n - 1$ sets
- Construction: $O(n^2)$ time
- Greedy Alg: $O(n^2)$ time for $(\ln n + 1)$ -approximation

Result 2A

$O(n^3)$ -time algorithm for $(\ln n + 1)$ -approximation to SNG.

Hardness via Set Cover

Result 2B

NP-hard to compute $(c \ln n)$ -approximation to SNG, for some $c > 0$.

Idea. Encode Set Cover as a navigability condition!

Baseline Results via Set Cover

Result 2A

$O(n^3)$ -time algorithm for $(\ln n + 1)$ -approximation to SNG.

Result 2B

NP-hard to compute $(c \ln n)$ -approximation to SNG, for some $c > 0$.

Baseline Results via Set Cover

Result 2A

$O(n^3)$ -time algorithm for $(\ln n + 1)$ -approximation to SNG.

Result 2B

NP-hard to compute $(c \ln n)$ -approximation to SNG, for some $c > 0$.

Q. Can we compute $O(\ln n)$ -approximation in time $o(n^3)$?

Faster Algorithms

(3/4)

Membership Set Cover

Recall. Building all sets $Z(s, u) \rightarrow O(n^3)$ time

Membership Set Cover

Recall. Building all sets $Z(s, u) \rightarrow O(n^3)$ time

But, checking $t \in Z(s, u) \equiv$ two calls to $d(\cdot, \cdot)$

$$d(u, t) < d(s, t)/\alpha$$

Membership Set Cover

Recall. Building all sets $Z(s, u) \rightarrow O(n^3)$ time

But, checking $t \in Z(s, u) \equiv$ two calls to $d(\cdot, \cdot)$

$$d(u, t) < d(s, t)/\alpha$$

Set Cover (Membership Model)

Access input only via queries “is element x in set S ?”

Algorithm via Membership Set Cover

n elements, m sets, $k = \min$ cover size

Lemma

$O(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

Algorithm via Membership Set Cover

n elements, m sets, $k = \min$ cover size

Lemma

$\tilde{O}(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

$$\tilde{O}(mk + nk) \longrightarrow \tilde{O}(n \cdot \deg(s))$$

Algorithm via Membership Set Cover

n elements, m sets, $k = \min$ cover size

Lemma

$\tilde{O}(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

$$\tilde{O}(mk + nk) \longrightarrow \tilde{O}(n \cdot \deg(s))$$

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $\tilde{O}(\ln n)$ -approximation to SNG.

($\text{OPT}_{\text{size}} := \min$ size of any α -navigable graph)

Consequences of Result 3

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $O(\ln n)$ -approximation to SNG.

($\text{OPT}_{\text{size}} := \min$ size of any α -navigable graph)

Consequences of Result 3

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $O(\ln n)$ -approximation to SNG.

($\text{OPT}_{\text{size}} := \min$ size of any α -navigable graph)

- $\text{OPT}_{\text{size}} = \tilde{O}(n) \implies \tilde{O}(n^2)$ runtime

Consequences of Result 3

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $O(\ln n)$ -approximation to SNG.

($\text{OPT}_{\text{size}} := \min$ size of any α -navigable graph)

- $\text{OPT}_{\text{size}} = \tilde{O}(n) \implies \tilde{O}(n^2)$ runtime
- $\alpha = 1 \implies \text{OPT}_{\text{size}} = \tilde{O}(n^{1.5})$ [DGM⁺24]
 $\implies \tilde{O}(n^{2.5})$ runtime

Fast Algorithm for Membership Set Cover

n elements, m sets, $k = \min$ cover size

Lemma

$O(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

Fast Algorithm for Membership Set Cover

n elements, m sets, $k = \min$ cover size

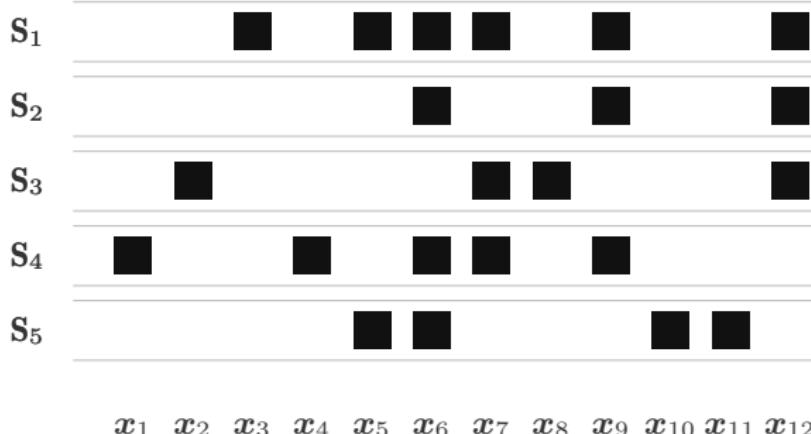
Lemma

$O(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

Idea. Simulate greedy via random sampling

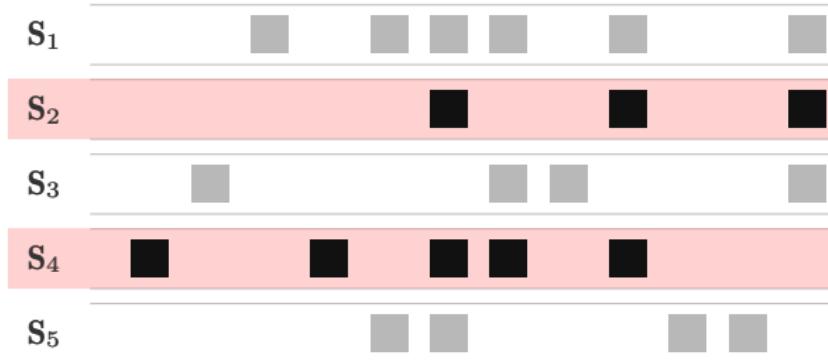
- Greedy: heaviest set covers $\geq (1/k)$ -fraction of elements

FindHeavySet: Illustration



- Sets S_1, \dots, S_5 , elements x_1, \dots, x_{12}

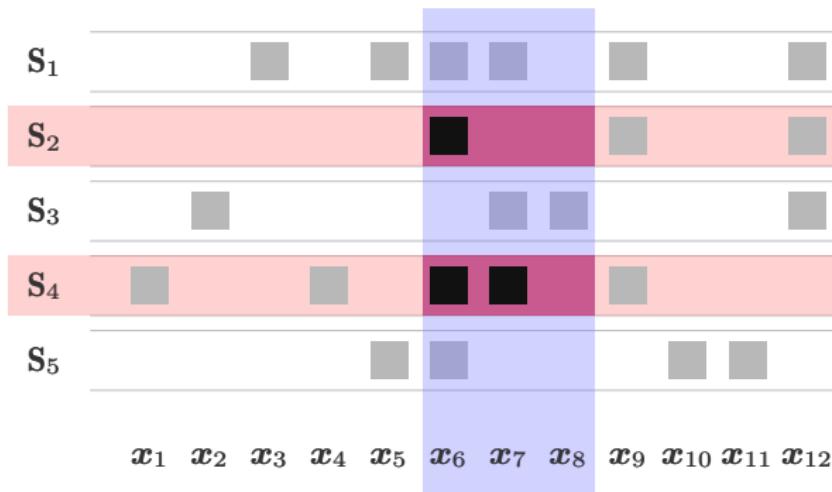
FindHeavySet: Illustration



$x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ x_9 \ x_{10} \ x_{11} \ x_{12}$

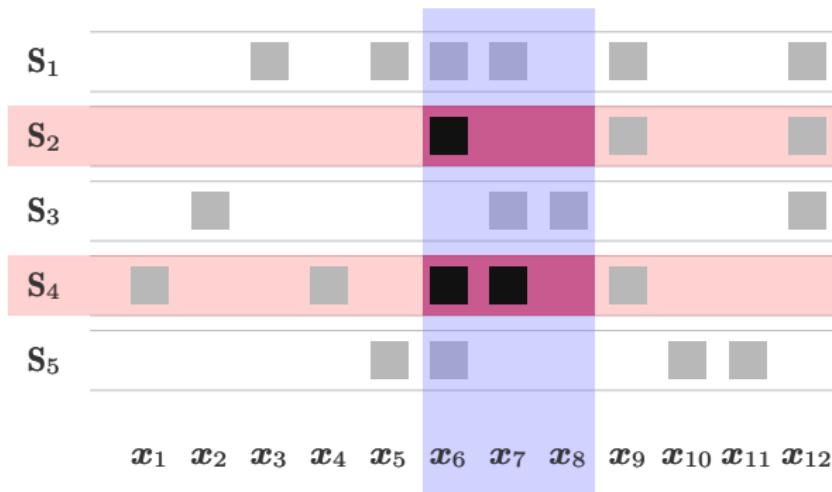
- Sets S_1, \dots, S_5 , elements x_1, \dots, x_{12}
- Set sample: $\{S_2, S_4\}$

FindHeavySet: Illustration



- Sets S_1, \dots, S_5 , elements x_1, \dots, x_{12}
- Set sample: $\{S_2, S_4\}$
- Element sample: $\{x_6, x_7, x_8\}$

FindHeavySet: Illustration



- Sets S_1, \dots, S_5 , elements x_1, \dots, x_{12}
- Set sample: $\{S_2, S_4\}$
- Element sample: $\{x_6, x_7, x_8\}$
- S_4 hits many elements \implies good set to pick!

FindHeavySet: Procedure

Goal. Find a set covering $\Omega(1/k)$ -fraction of uncovered elements

FindHeavySet: Procedure

Goal. Find a set covering $\Omega(1/k)$ -fraction of uncovered elements

Imagine: $\exists k$ heavy sets, weight $\Omega(1/k)$

FindHeavySet: Procedure

Goal. Find a set covering $\Omega(1/k)$ -fraction of uncovered elements

Imagine: $\exists k$ heavy sets, weight $\Omega(1/k)$

- Sample $\tilde{O}(m/k)$ sets \longrightarrow one heavy w.h.p.

FindHeavySet: Procedure

Goal. Find a set covering $\Omega(1/k)$ -fraction of uncovered elements

Imagine: $\exists k$ heavy sets, weight $\Omega(1/k)$

- Sample $\tilde{O}(m/k)$ sets \longrightarrow one heavy w.h.p.
- Sample $\Theta(k \ln n)$ uncovered elements

FindHeavySet: Procedure

Goal. Find a set covering $\Omega(1/k)$ -fraction of uncovered elements

Imagine: $\exists k$ heavy sets, weight $\Omega(1/k)$

- Sample $\tilde{O}(m/k)$ sets \longrightarrow one heavy w.h.p.
- Sample $\Theta(k \ln n)$ uncovered elements
- Set hits $\Omega(\ln n)$ elements \iff **heavy**

FindHeavySet: Procedure

Goal. Find a set covering $\Omega(1/k)$ -fraction of uncovered elements

Imagine: $\exists k$ heavy sets, weight $\Omega(1/k)$

- Sample $\tilde{O}(m/k)$ sets \longrightarrow one heavy w.h.p.
- Sample $\Theta(k \ln n)$ uncovered elements
- Set hits $\Omega(\ln n)$ elements \iff **heavy**

$\tilde{O}(m)$ queries to find heavy set

FindHeavySet: Procedure

Goal. Find a set covering $\Omega(1/k)$ -fraction of uncovered elements

Imagine: $\exists k$ heavy sets, weight $\Omega(1/k)$

- Sample $\tilde{O}(m/k)$ sets \longrightarrow one heavy w.h.p.
- Sample $\Theta(k \ln n)$ uncovered elements
- Set hits $\Omega(\ln n)$ elements \iff **heavy**

$\tilde{O}(m)$ queries to find heavy set

vs.

$\Omega(mn)$ to find heaviest

Final Algorithm

Call FindHeavySet until full cover $\longrightarrow O(k \ln n)$ rounds

Final Algorithm

Call FindHeavySet until full cover $\longrightarrow O(k \ln n)$ rounds

Queries per round:

- $\tilde{O}(m)$ to find heavy set

Final Algorithm

Call FindHeavySet until full cover $\longrightarrow O(k \ln n)$ rounds

Queries per round:

- $\tilde{O}(m)$ to find heavy set
- $O(n)$ to update uncovered elements

Final Algorithm

Call FindHeavySet until full cover $\longrightarrow O(k \ln n)$ rounds

Queries per round:

- $\tilde{O}(m)$ to find heavy set
- $O(n)$ to update uncovered elements

Lemma

$O(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

Final Algorithm

Lemma

$O(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

Final Algorithm

Lemma

$O(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $O(\ln n)$ -approximation to SNG.

Final Algorithm

Lemma

$O(\ln n)$ -approx Set Cover (membership) in $\tilde{O}(mk + nk)$ time.

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $O(\ln n)$ -approximation to SNG.

Q. What if $\text{OPT}_{\text{size}} = \tilde{\Omega}(n^2)$?

Bicriteria Approximation to SNG

Bicriteria Approximation to SNG

Given $\alpha \leq \beta$, build α -navigable graph \mathbf{G} .

- Let $k_\beta := \text{max-degree of sparsest } \beta\text{-navigable graph}$
- **Guarantee.** $\deg(\mathbf{G}) \leq (\text{approx factor}) \times k_\beta$

Bicriteria Approximation to SNG

Bicriteria Approximation to SNG

Given $\alpha \leq \beta$, build α -navigable graph \mathbf{G} .

- Let $k_\beta := \max\text{-degree of sparsest } \beta\text{-navigable graph}$
- Guarantee.** $\deg(\mathbf{G}) \leq (\text{approx factor}) \times k_\beta$

Result 4 (informal)

$\tilde{O}(n^\omega)$ -time algorithm for $O(\ln n)$ -approximation to $(\alpha, 2\alpha)$ -SNG.

($\omega \approx 2.37 = \text{matrix multiplication exponent}$)

Verification via Matrix Multiplication

How to even verify that G is α -navigable?

Verification via Matrix Multiplication

How to even verify that \mathbf{G} is α -navigable?

Naive:

- For all $s \neq t \in \mathbf{P}$ and $(s, u) \in E$, check
$$d(u, t) < d(s, t)/\alpha$$
- $\Theta(n^2 \cdot \deg(\mathbf{G})) \longrightarrow$ potentially $\Omega(n^3)$ time!

Verification via Matrix Multiplication

How to even verify that G is α -navigable?

Better: batch verification!

Verification via Matrix Multiplication

How to even verify that G is α -navigable?

Better: batch verification!

- Let $r = d(s, t)$ and $A, B_r \in \{0, 1\}^{n \times n}$

Verification via Matrix Multiplication

How to even verify that \mathbf{G} is α -navigable?

Better: batch verification!

- Let $r = d(s, t)$ and $A, B_r \in \{0, 1\}^{n \times n}$

$$A[s, u] = 1 \iff (s, u) \in E \quad (\text{adjacency in } \mathbf{G})$$

$$B_r[u, t] = 1 \iff d(u, t) < r/\alpha. \quad (\text{small dists in } \mathbf{P})$$

Verification via Matrix Multiplication

How to even verify that \mathbf{G} is α -navigable?

Better: batch verification!

- Let $r = d(s, t)$ and $A, B_r \in \{0, 1\}^{n \times n}$

$$A[s, u] = 1 \iff (s, u) \in E \quad (\text{adjacency in } \mathbf{G})$$

$$B_r[u, t] = 1 \iff d(u, t) < r/\alpha. \quad (\text{small dists in } \mathbf{P})$$

- (s, t) constraint satisfied by $\mathbf{G} \iff (A \cdot B_r)[s, t] \neq 0$

Verification via Matrix Multiplication

How to even verify that \mathbf{G} is α -navigable?

Better: batch verification!

- Let $r = d(s, t)$ and $A, B_r \in \{0, 1\}^{n \times n}$

$$A[s, u] = 1 \iff (s, u) \in E \quad (\text{adjacency in } \mathbf{G})$$

$$B_r[u, t] = 1 \iff d(u, t) < r/\alpha. \quad (\text{small dists in } \mathbf{P})$$

- (s, t) constraint satisfied by $\mathbf{G} \iff (A \cdot B_r)[s, t] \neq 0$

Lemma

If \mathbf{P} has L distances, we can verify α -navigability in time $O(L \cdot n^\omega)$.

Bicriteria Algorithm Sketch

Lemma

If \mathbf{P} has L distances, we can verify α -navigability in time $O(L \cdot n^\omega)$.

Algorithm: Discretize distances in \mathbf{P} , then repeat:

Bicriteria Algorithm Sketch

Lemma

If \mathbf{P} has L distances, we can verify α -navigability in time $O(L \cdot n^\omega)$.

Algorithm: Discretize distances in \mathbf{P} , then repeat:

1. **Sample** $k_{2\alpha}$ uncovered constraints \longrightarrow add edges

Bicriteria Algorithm Sketch

Lemma

If \mathbf{P} has L distances, we can verify α -navigability in time $O(L \cdot n^\omega)$.

Algorithm: Discretize distances in \mathbf{P} , then repeat:

1. **Sample** $k_{2\alpha}$ uncovered constraints \longrightarrow add edges
2. **Verify** \longrightarrow remaining uncovered constraints

Bicriteria Algorithm Sketch

Lemma

If \mathbf{P} has L distances, we can verify α -navigability in time $O(L \cdot n^\omega)$.

Algorithm: Discretize distances in \mathbf{P} , then repeat:

1. **Sample** $k_{2\alpha}$ uncovered constraints \longrightarrow add edges
2. **Verify** \longrightarrow remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Bicriteria Algorithm Sketch

Lemma

If \mathbf{P} has L distances, we can verify α -navigability in time $O(L \cdot n^\omega)$.

Algorithm: Discretize distances in \mathbf{P} , then repeat:

1. **Sample** $k_{2\alpha}$ uncovered constraints \longrightarrow add edges
2. **Verify** \longrightarrow remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

$\tilde{O}(n^\omega)$ -time algorithm for $O(\ln n)$ -approximation to $(\alpha, 2\alpha)$ -SNG.

Faster Algorithms for SNG

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $O(\ln n)$ -approximation to SNG.

Result 4 (informal)

$\tilde{O}(n^\omega)$ -time algorithm for $O(\ln n)$ -approximation to $(\alpha, 2\alpha)$ -SNG.

Faster Algorithms for SNG

Result 3

$\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time algorithm for $O(\ln n)$ -approximation to SNG.

Result 4 (informal)

$\tilde{O}(n^\omega)$ -time algorithm for $O(\ln n)$ -approximation to $(\alpha, 2\alpha)$ -SNG.

Q. Even faster algorithms for worse approximation?

Lower Bound

(4/4)

Simple $\Omega(n^2)$ Lower Bound

Result 5

$\Omega(n^2)$ queries to $d(\cdot, \cdot)$ needed for *any* $o(n)$ -approximation to SNG.

Simple $\Omega(n^2)$ Lower Bound

Result 5

$\Omega(n^2)$ queries to $d(\cdot, \cdot)$ needed for *any* $o(n)$ -approximation to SNG.

Idea. Navigability \implies graph contains minimum-distance edge

Simple $\Omega(n^2)$ Lower Bound

Result 5

$\Omega(n^2)$ queries to $d(\cdot, \cdot)$ needed for *any* $o(n)$ -approximation to SNG.

Idea. Navigability \implies graph contains minimum-distance edge

- Fix a metric with constant-degree navigable graph
- Shrink a random distance \longrightarrow hidden shortcut

Perturbed Path Metric

Metric on $[n]$:

$$d(i, j) = 1 + \frac{|i - j|}{n - 1}$$

Perturbation: sample (i^*, j^*) at random, then update

$$d(i^*, j^*) \leftarrow 1$$

Perturbed Path Metric

$$d(i, j) = 1 + \frac{|i - j|}{n - 1} \in [1, 2], \quad d(i^*, j^*) = 1$$

Perturbed Path Metric

$$d(i, j) = 1 + \frac{|i - j|}{n - 1} \in [1, 2], \quad d(i^*, j^*) = 1$$

\exists 1-navigable graph of degree 3:

Perturbed Path Metric

$$d(i, j) = 1 + \frac{|i - j|}{n - 1} \in [1, 2], \quad d(i^*, j^*) = 1$$

\exists 1-navigable graph of degree 3:

Any 1-navigable graph must contain edge (i^*, j^*)

$\implies \Omega(n^2)$ queries for degree $o(n)$

Perturbed Path Metric

$$d(i, j) = 1 + \frac{|i - j|}{n - 1} \in [1, 2], \quad d(i^*, j^*) = 1$$

\exists 1-navigable graph of degree 3:

Any 1-navigable graph must contain edge (i^*, j^*)

$\implies \Omega(n^2)$ queries for degree $o(n)$

[Conway et al. 2025] $\tilde{\Omega}(n^2)$ lower bound in Euclidean via Closest Pair

Navigability Landscape

Results 3, 4, 5

- $\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time for $O(\ln n)$ -approximation to SNG
- $\tilde{O}(n^\omega)$ -time for $O(\ln n)$ -approximation to $(\alpha, 2\alpha)$ -SNG
- $\Omega(n^2)$ queries for any $o(n)$ -approximation to SNG

Navigability Landscape

Results 3, 4, 5

- $\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time for $O(\ln n)$ -approximation to SNG
- $\tilde{O}(n^\omega)$ -time for $O(\ln n)$ -approximation to $(\alpha, 2\alpha)$ -SNG
- $\Omega(n^2)$ queries for any $o(n)$ -approximation to SNG

Theorem [Conway et al. 2025]

- $\tilde{O}(n^2)$ -time for $O(\ln n)$ -approximation for $\alpha = 1$
- $\tilde{O}(n^{2.5})$ -time for $O(\ln n)$ -approximation for $\alpha > 1$

Navigability Landscape

Results 3, 4, 5

- $\tilde{O}(n \cdot \text{OPT}_{\text{size}})$ -time for $O(\ln n)$ -approximation to SNG
- $\tilde{O}(n^\omega)$ -time for $O(\ln n)$ -approximation to $(\alpha, 2\alpha)$ -SNG
- $\Omega(n^2)$ queries for any $o(n)$ -approximation to SNG

Theorem [Conway et al. 2025]

- $\tilde{O}(n^2)$ -time for $O(\ln n)$ -approximation for $\alpha = 1$
- $\tilde{O}(n^{2.5})$ -time for $O(\ln n)$ -approximation for $\alpha > 1$

Q. Is $\tilde{O}(n^2)$ time possible for $O(\ln n)$ -approximation when $\alpha > 1$?

Thanks for Listening!
