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4. Lower Bound on query complexity

Concurrent work with overlapping results!

O Conway, Dhulipala, Farach-Colton, Johnson, Landrum, Musco, Schechter,
Suel, Wen. Efficiently Constructing Sparse Navigable Graphs. (2025)
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Why Graphs? It’s a Small World

Real-world networks exhibit small world behavior

Milgram (1969). Packages from Nebraska — Boston
o “Pass to a friend closer to Boston”

o Median chain length: only six!
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Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

o Model: Grid + random long-range edges

o Rule: Move to neighbor closest to the target
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Navigability in Small-World Graphs

Kleinberg (2000). Formalization of Milgram’s experiment

o Model: Grid + random long-range edges
o Rule: Move to neighbor closest to the target

o

N/
V]

Q. Can we make arbitrary data navigable for NNS?

(Motivation behind modern NNS heuristics!)
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Nearest Neighbor Search?

Issue. Navigability =% nearest neighbor search

Approximate Nearest Neighbor (ANN)

Return any c-approximate nearest neighbor p of query g:

d(p,q) < c-d(p*,q).

GreedySearch(s, g) — (1/¢)-ANN
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a-Navigability: a small (world) fix!

«-Navigability [Indyk-Xu, 2023]

G is a-navigable if for all s # t € P, 3 edge (s, u) s.t.

d(u,t) < d(s,t)/c.

Surprising Theorem! [Indyk-Xu, 2023]

Ya > 1, if G is a-navigable, then GreedySearch returns a

(a i 1 +€> -ANN in O(log(A/¢)) hops.

o —

Takeaway: sparse a-navigable graphs — fast ANN!
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Building a-Navigable Graphs

Heuristics: DiskANN, HNSW, etc.

Theory:
o Slow-DiskANN — a-nav graph with deg,,, < (4a)*(*) [1X23]
o 3 1-navigable graph of size < O(n!"%) [DGMT24]
Our Paper:

Sparsest Navigable Graph (SNG)

Given dataset (P,d) and a > 1,
o What is the sparsest a-navigable graph on P?
o How fast can we compute (or approximate) it?

Sparsity objective: minimize maximum degree
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Negative Result for Slow-DiskANN

Slow-DiskANN — a-nav graph with deg,,, < (4a)*(") [1X23]
(A(P) := doubling dimension of P)

There is a dataset P where:

o 3 1-navigable graph of max-degree O(logn)
o Slow-DiskANN outputs graph of degree O(n)

= Slow-DiskANN gives Q(n)-approximation (very bad!)
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«-Navigability from source s

For all ¢ # s, there exists an edge (s, u) with

d(u,t) < d(s,t)/a.

Equivalent Set Cover instance.
Elements P\ {s}
Sets Z(s,u) = {t|d(u,t) < d(s,t)/a}

Cover size  deg(s)

Key: a-navigability = n Set Cover instances
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SNG — Set Cover

Z(s,uy)

Z(s,us)

Z(S, 71,3)

Z(s,uy)
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Algorithm via Greedy Set Cover

Key: a-navigability = n Set Cover instances
Each instance:

o n — 1 elements, n — 1 sets

o Construction: O(n?) time

o Greedy Alg: O(n?) time for (Inn + 1)-approximation

O(n?)-time algorithm for (Inn + 1)-approximation to SNG.
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Result 2B

NP-hard to compute (¢lnn)-approximation to SNG, for some ¢ > 0.

Idea. Encode Set Cover as a navigability condition!
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Baseline Results via Set Cover

O(n?)-time algorithm for (Inn + 1)-approximation to SNG.

Result 2B

NP-hard to compute (clnn)-approximation to SNG, for some ¢ > 0.

Q. Can we compute O(In n)-approximation in time o(n?)?
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Membership Set Cover

Recall. Building all sets Z(s,u) — O(n?) time
But, checking t € Z(s,u) = two calls to d(-,)

d(u,t) < d(s,t)/a

Set Cover (Membership Model)

Access input only via queries “is element x in set S?”
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Consequences of Result 3

O(n - OPTgize)-time algorithm for O(Iln n)-approximation to SNG.

(OPTsize := min size of any a-navigable graph)
o OPTsze = O(n) = O(n?) runtime
o a=1 = OPTge = O(n'?) [DGM*24]

— O(n*®) runtime
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Fast Algorithm for Membership Set Cover

n elements, m sets, k= min cover size

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

Idea. Simulate greedy via random sampling

o Greedy: heaviest set covers > (1/k)-fraction of elements
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o Sets Sq,...,Ss, elements xq, ...,z

o Set sample: {S5,S4}
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o Sets Sq,...,Ss, elements xq, ...,z
o Set sample: {S2,S4}

o Element sample: {x¢, z7, xs}



FindHeavySet: Illustration

S1 H EENE B~ N
52 B =
S5 o - HE H
s m o [

Ss L]

L1 *2 L3 L4 L5 Le L7 XL L9 T10 L11 L12

[¢]

Sets S1,...,Ss, elements xq,...,x12

Set sample: {So,S4}

[¢]

[¢]

Element sample: {xg, 7, x5}

[¢]

S4 hits many elements = good set to pick!
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FindHeavySet: Procedure

Goal. Find a set covering Q(1/k)-fraction of uncovered elements
Imagine: 3k heavy sets, weight Q(1/k)

o Sample O(m/k) sets — one heavy w.h.p.
o Sample ©(k1Inn) uncovered elements

o Set hits Q(Inn) elements <= heavy

O(m) queries to find heavy set
vs.

Q(mn) to find heaviest
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Call FindHeavySet until full cover — O(k1nn) rounds
Queries per round:

o O(m) to find heavy set

o O(n) to update uncovered elements

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.
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Final Algorithm

O(Inn)-approx Set Cover (membership) in O(mk + nk) time.

O(n - OPTgiz )-time algorithm for O(In n)-approximation to SNG.

Q. What if OPTgje = Q(n?)?
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Bicriteria Approximation to SNG

Given a < 3, build a-navigable graph G.
o Let kg := max-degree of sparsest 5-navigable graph

o Guarantee. deg(G) < (approx factor) x kg

Result 4 (informal)

O(n®)-time algorithm for O(In n)-approximation to (, 2a)-SNG.

(w & 2.37 = matrix multiplication exponent)
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Verification via Matrix Multiplication

How to even verify that G is a-navigable?

Naive:
o Forall s #t¢t € P and (s,u) € E, check

d(u,t) < d(s,t)/a
o O(n?-deg(G)) — potentially Q(n?) time!
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How to even verify that G is a-navigable?

Better: batch verification!
o Letr =d(s,t) and A, B, € {0,1}"*"

Als,ul =1 < (s,u) € £ (adjacency in G)
B [u,t] =1 < d(u,t) < r/a. (small dists in P)

o (s,t) constraint satisfied by G <= (A - B,)[s,t] #0

If P has L distances, we can verify a-navigability in time O(L - n®).
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Bicriteria Algorithm Sketch

If P has L distances, we can verify a-navigability in time O(L - n®).

Algorithm: Discretize distances in P, then repeat:
1. Sample k5, uncovered constraints — add edges
2. Verify — remaining uncovered constraints

Key Lemma: Each round eliminates constant fraction of constraints

Result 4 (informal)

O(n*)-time algorithm for O(Inn)-approximation to (c, 2c)-SNG.
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Faster Algorithms for SNG

O(n - OPTgz )-time algorithm for O(In n)-approximation to SNG.

Result 4 (informal)

O(n®)-time algorithm for O(In n)-approximation to («, 2a)-SNG.

Q. Even faster algorithms for worse approximation?
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Simple 2(n?) Lower Bound

Q(n?) queries to d(-,-) needed for any o(n)-approximation to SNG.

Idea. Navigability = graph contains minimum-distance edge
o Fix a metric with constant-degree navigable graph

o Shrink a random distance — hidden shortcut



Perturbed Path Metric

Metric on [n]:

. i—7
d(Z’]):lJr%

Perturbation: sample (i*, 7*) at random, then update

d(i*,5%) «— 1



Perturbed Path Metric

i — Jjl
n—1

d(i,j) =1+ €[l,2], d@,5)=1



Perturbed Path Metric
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3 1-navigable graph of degree 3:




Perturbed Path Metric

|i — 7
n—

d(i,j) =1+

€ [1,2], d(z*,7") =1

3 1-navigable graph of degree 3:

Any 1-navigable graph must contain edge (¢*,5%)

— Q(n?) queries for degree o(n)



Perturbed Path Metric

|i — 7
n—

d(i,j) =1+

€ [1,2], d(z*,7") =1

3 1-navigable graph of degree 3:

Any 1-navigable graph must contain edge (¢*,5%)

— Q(n?) queries for degree o(n)

[Conway et al. 2025] €(n?) lower bound in Euclidean via Closest Pair



Navigability Landscape

o O(n - OPTgpy)-time for O(Inn)-approximation to SNG

o O(n*)-time for O(Inn)-approximation to (o, 2a)-SNG
o Q)

(n?) queries for any o(n)-approximation to SNG




Navigability Landscape

o O(n - OPTgpy)-time for O(Inn)-approximation to SNG

o O(n*)-time for O(Inn)-approximation to (o, 2a)-SNG
o Q)

(n?) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

o O(n?)-time for O(Inn)-approximation for v = 1
o O

n
(n?:5)-time for O(Inn)-approximation for a > 1




Navigability Landscape

o O(n - OPTgpy)-time for O(Inn)-approximation to SNG

o O(n*)-time for O(Inn)-approximation to (o, 2a)-SNG
o Q)

(n?) queries for any o(n)-approximation to SNG

Theorem [Conway et al. 2025]

o O(n?)-time for O(Inn)-approximation for v = 1
o O

n
(n?:5)-time for O(Inn)-approximation for a > 1

Q. Is O(n?) time possible for O(Inn)-approximation when o > 1?



Thanks for Listening!
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